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Introduction

The objects

Beyond a doubt, among the “stars” of vector calculus we have the
operators

e grad
o div
e curl

Aim of this talk is to understand better their properties and their
connections with some topological concepts.
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Introduction

First results

First well-known results are (just compute...):

@ curlgrady = 0 for each scalar function ¢

@ divecurlH =0 for each vector field H.

We can thus write

Theorem (1)

If H = grad ), then curlH = 0 (namely, H is curl-free).

Theorem (2)

If B = curl A, then div B = 0 (namely, B is divergence-free).
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Introduction

First results (cont'd)

The natural question is:

@ are these conditions sufficient?

We will see that the answer depends on the geometry of the region
Q where we are working.
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Scalar and vector potentials in the whole space

In the whole space...

Let us start from Q = R3. We need some tools. First of all we
know [just compute...] that the function

1 1

K(x,y) = ————
(xy) = o o

satisfies
—AK(x,y) =0  forx#y
J55 grad «K(x,0) - n(x) dS, = -1,

where B is the ball of center 0 and radius 1, and n the unit
outward normal on 0B.
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Scalar and vector potentials in the whole space

Dirac dg distribution

[Indeed, in a more advanced mathematical language, the function
K(x,y) is the fundamental solution of the —A operator, namely, it
satisfies —A,K(x,y) = do(x — y) in the distributional sense, dg
being the Dirac delta distribution centered at 0.

Roughly speaking, for each (suitable...) function f the Dirac delta

distribution satisfies

do(x —y)f(y)dy = f(x).
R3

We also know that the function
ux) = [ K(xy)Fy) dy
satisfies —Au = f in R3. In fact (formally...)
—Au(x) = Al fzs K(x,¥)f(y) dy] = [ps[-AxK(x,y)]f(y) dy
= Jga d0(x — y)f(y) dy = f(x) ]
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Scalar and vector potentials in the whole space

Scalar and vector potentials

Let us come to the determination of a scalar potential for a

curl-free vector field H (namely, a scalar function ¢ such that
grad ) = H) and of a vector potential A for a divergence-free
vector field B (namely, a vector field A such that curl A = B).

Consider a vector field H and define in R3 the function
0 =~ [ Kxy)divH(y)dy. )
Consider a vector field B and define in R3 the vector field

A(x) = /R3 K(x,y)curl B(y) dy . (3)
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Scalar and vector potentials in the whole space

Theorems

Theorem (3)

Assume that H decays sufficiently fast at infinity and satisfies
curlH = 0 in R3. The function 1) satisfies grad ) = H in R3.

Proof. It is easily shown that
1 xi—vyi

D, K(x, —-D, K(x,y),
i (X y) 47T |X y|3 Yi (X y)
hence (formaIIy and using that D;H; = DjH;...)
Dith(x) = — [gs D K(x,y)divH(y) dy = [zs Dy, K(x,y)div H(y) dy

_ijR3 i Dy K (%, ¥)Hi(y) dy = 32, [gs Dy K(x,y) DiHj(y) dy
=, Jrs Dy K(x, ¥)DiHi(y) dy = — [ps AyK X,y)H;(y) dy
= Jgs do(x — y)Hi(y) dy = Hi(x). U



Scalar and vector potentials in the whole space

Theorems (cont'd)

Theorem (4)

Assume that B decays sufficiently fast at infinity and satisfies
divB = 0 in R3. The vector field A satisfies curl A = B (and
divA =0)in R3 .

Proof. We have

D1A2(X) = ng, Dle X y)(D3Bl — DlB3)(y) dy
= — Jps Dy, K(x,y)(D3B1 — D1B3)(y) dy
= fR3[ D)/1 Dle(X y)B3(y) + Dy3Dy1K(XvY)Bl(y)] dy
= Jrsl=Dy Dy K(x,y)Bs(y) — Dy, K(x,y) D1Bi(y)] dy.
Similarly,

Dar(x) = | 104D, K(x.9)Ba(y) + D, K(x.9)DaBaly)] oy
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Scalar and vector potentials in the whole space

Theorems (cont'd)

Since D1B; + DB, = — D3B3, we find

= Jre DysK x Y)[DlBl( ) + D2Bx(y)] dy

- fR3 X Y D3B3(Y) dy = - fR3 Dy3D}/3 K(Xv y)B3(y) dyv
hence

D1Az(x) — DoA1(x) = — [ps AyK(x,y)Bs(y) dy

= Jgs Jo(x — y)Bs(y) dy = Bs3(x).

Repeating the same computations for the other components, the
first part of the thesis follows.
On the other hand

D1A1(X = fR3 Dle X, y)(DgB3 — D3Bg)(y) dy
— Jrs[Dy K(x,y)D2B3(y) — Dy, K(x,y) D1Ba(y)] dy

and, proceding similary for D>A, and D3A3, the second part of the
thesis is easily verified. O
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Scalar and vector potentials in the whole space

Leading idea

What has been the idea?
o If ¢ satisfies grad ) = H, then

—divH = —divgrady = — Ay,

hence we can use the (scalar) integral representation formula
in terms of the fundamental solution K;

o if A satisfies curl A = B (and div A = 0), then
curl B =curlcurl A = curlcurl A — graddivA = —AA,

hence we can use the (vector) integral representation formula
in terms of the fundamental solution K.
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Scalar and vector potentials in the whole space

Biot—Savart formulas

An alternative (and essentially equivalent) point of view is the one
leading to the Biot—Savart formulas:

@ Scalar potential: look for 1) = div grad .
If ¢ satisfies grad ) = H, then

H = grad divgrad ¢ = Agrad ¢,

hence
grady = — [ K(xy)H(y)dy

and

bx) = - / XY H(y)dy. (4)

:E R3 \X—Y|3'
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Scalar and vector potentials in the whole space

Biot—Savart formulas (cont'd)

@ Vector potential: look for A = curl Q (with divQ = 0).
If A satisfies curl A = B, then

B=curlcurlQ = -AQ,

hence
Q) = | K(x.)B(y) dy
and

Ax) = / VX B(y)dy. (5)

T Ar Jps x—yP
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Scalar and vector potentials in a bounded domain

In a bounded domain...

The problem is more complicated in a bounded domain Q.
However, some well-known results are usually presented in any
calculus course.

Theorem (5)

Assume that H satisfies curlH = 0 in Q and that any closed curve
in Q is the boundary of a suitable surface S C Q2. Then there
exists a scalar function ) satisfying grady = H in Q.

Proof. Since the flux of curl H is vanishing on each surface S,
from the Stokes theorem the line integral of H on each closed
curve in  is vanishing. O
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Scalar and vector potentials in a bounded domain

In a bounded domain... (cont'd)

@ A domain € for which any closed curve ¢ C € is the boundary
of a surface S C Q is called homologically trivial.

Many of you could have in mind the following definition: a domain
Q is said to be simply-connected if any closed curve ¢ C Q can be
retracted in Q to a point p € Q. [Using a different language, it is
called homotopically trivial.]

The preceding theorem has clarified this fact: for establishing if a
curl-free vector field is a gradient, the relevant geometrical
property is related to homology, not to homotopy.

Question (left apart... but we will come back to it):

@ A simply-connected domain is clearly homologically trivial. Do
we have examples of homologically trivial domains that are
not simply-connected?
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Scalar and vector potentials in a bounded domain

In a bounded domain... (cont'd)

Concerning the vector potential, we have the (less known...) result:

Theorem (6)

Assume that B satisfies div B = 0 in Q and that any closed surface
in Q is the boundary of a suitable subdomain D C Q. Then there
exists a scalar function A satisfying curl A = B in €.

Proof. Since the integral of div B is vanishing in each subdomain
D, from the divergence theorem the flux of B on each closed
surface in € is vanishing. This is enough to guarantee the
existence of a vector potential A (more details later on...). O
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Scalar and vector potentials in a bounded domain

In a bounded domain... (cont'd)

Other simple results are the following:

Theorem (7)

Assume that H satisfies curlH =0 in Q and H x n = 0 on 092.
Then there exists a scalar function 1 satisfying grady = H in Q.

Proof. Extend H by 0 outside €; since H x n =0 on 09, the
extension is still curl-free, therefore it is the gradient of a scalar
potential in R3. O
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Scalar and vector potentials in a bounded domain

In a bounded domain... (cont'd)

Theorem (8)

Assume that B satisfies divB =0 in Q and B-n =0 on 02. Then
there exists a vector field A satisfying curl A = B in Q.

Proof. Extend B by 0 outside 2; since B-n =0 on 01, the
extension is still divergence-free, therefore it is the curl of a vector
potential in R3. O

@ But: can we find necessary and sufficient conditions?
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Helmholtz decomposition

Helmholtz

Hermann von Helmholtz (1821-1894),
in a painting by Hans Schadow (1891).
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Helmholtz decomposition

Harmonic fields

A way for finding the answer is the resort to the so-called
Helmholtz decomposition: any vector field can be written as the
sum of a gradient and a curl.

For stating the precise results we need the definitions of the spaces
of harmonic fields:

H(m; Q) = {w € (L3())®|curlw = 0,divw = 0,w - n = 0 on 9Q}

H(e; Q) = {w € (L?(2))3 |curlw = 0,divw = 0,w x n = 0 on 9Q}.

Note that an element of H(m; Q) can be written as the curl of a
vector potential, an element of H(e; ) can be written as the
gradient of a scalar potential.
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Helmholtz decomposition

Harmonic fields (cont'd)

A preliminary remark about the structure of these spaces: they are
“reading” some topological properties of the domain Q. In fact:

Theorem (9)

Let Q be topologically equivalent to a ball. Then H(m; Q) = {0}
and H(e; ) = {0}.

Proof. Let w € H(m; Q) or w € H(e; 2). Since a ball is
homologically trivial, we have w = grad 1), where 1 satisfies

A =0 in Q. When w € H(m; Q) we also have grad) - n =0 on
0€2. Well-known results on the Neumann problem furnish

grady = 0 in Q. When w € H(e; Q), we also have grady) xn =0
on 0f2. Since 0f2 is connected, we obtain 1) = const on 0f2.
Well-known results on the Dirichlet boundary value problem for the
Laplace operator give ¥ = const and grad) = 0 in Q. O
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Helmholtz decomposition

Harmonic fields (cont'd)

A doubt:

@ Have we examples of non-trivial harmonic fields?
The answer is “yes”.

@ Take the magnetic field generated in the vacuum by a current
of constant intensity /% passing along the x3-axis: as it is
well-known, for x¥ + x3 > 0 it is given by

IO X2 X1
H(x1,x,x3) = — | — , ,0) .
(a0, %) 27T< X12+X22 X12—|-x22
As Maxwell equations require, one sees that curlH = 0 and
divH = 0. Consider the torus T obtained by rotating a disk
(contained in the plane {x2 = 0}) around the x3-axis: it is
easily checked that H-n =0 on OT. Hence we have found a
non-trivial harmonic field H € H(m; T).
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Helmholtz decomposition

Harmonic fields (cont'd)

@ Consider the electric field generated in the vacuum by a
pointwise charge po placed at the origin. For x #£ 0 it is given
by

po X
E = -
(X17X27X3) 47_‘_50 ’X|3 )

where € is the electric permittivity of the vacuum. It satisfies

divE =0 and curl E :Land moreover E x n = 0 on the

boundary of C = Bg, \ Bg, (here 0 < Ry < R», and Bk is the

ball of centre 0 and radius R). We have thus found a

non-trivial harmonic field E € H(e; C).
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Helmholtz decomposition

Helmholtz decomposition

Theorem (10)

Any vector function v € (L?(Q))3 can be decomposed into the
following sum
v=curlQ+grady +p, (6)

where p € H(m; Q) (hence it can be written as the curl of a vector
potential), and each term of the decomposition is orthogonal to
the others.

Moreover, if curlv = 0 in Q it follows Q = 0, if divv = 0 in Q and
v-n =0 on 09 one has grad ) = 0, and if v.LH(m; Q) one finds
p=0.
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Helmholtz decomposition

Helmholtz decomposition (cont'd)

Proof. Take: the vector field Q solution to

curlcurlQ = curlv  in Q

divQ=0 in Q
Qxn=0 on 0f)
QLH(e; Q);

the scalar function 1) solution to

Ay =divv in Q
grady-n=v-n ondQ;

the vector field p, orthogonal projection of v on H(m; Q).
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Helmholtz decomposition

Helmholtz decomposition (cont'd)

The orthogonality is easily checked:

/curIQ-gradd):/Q-curlgradzﬁ—k/ nx Q-grady =0
Q Q oQ

/curIQ-p:/Q-curlp+/ nxQ -p=0,
Q Q o0

/Qgrad¢‘P=—/Q¢divp+/891[)n-p:0.

Moreover we have
curl(v—curlQ —grady — p) =0 in Q
div(v—curlQ —grady) — p) =0 inQ
(v—curlQ —grady — p) - n=0 on 0Q
(recall that Q x n =0 gives curlQ - n = 0 on 99),



Helmholtz decomposition

Helmholtz decomposition (cont'd)

Hence we have found

(v—curlQ —grady — p) € H(m; Q),
but we also have

(v—curlQ —grady — p) LH(m; Q),

therefore v = curl Q + grad ¢ + p. O
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Helmholtz decomposition

The characterization theorem for scalar potentials

We can conclude with

Theorem (11)

The following statements are equivalent:

@ there exists a scalar function y such that v = grad ¢ in Q
e curlv=0inQ and v.LH(m; Q).

Proof. We have only to check that grad o L H(m; Q). Taking
p € H(m; Q) we have

/gradgp-p:—/godivp—i—/ en-p=0. O
Q Q aQ
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Helmholtz decomposition

Helmholtz decomposition

Theorem (12)

Any vector function v € (L?(Q))3 can be decomposed into the
following sum

v=curlA+gradx + 7, (7)

where n € H(e; Q) (hence it can be written as the gradient of a
scalar potential), and each term of the decomposition is orthogonal
to the others.

Moreover, if curlv = 0 in Q and v x n = 0 on 022 it follows

A =0, ifdivv =0 inQ one has grad x = 0, and if v.LH(e; Q)
one finds n = 0.
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Helmholtz decomposition

Helmholtz decomposition (cont'd)

Proof. Take: the vector field A solution to

curlcurl A =curlv  in Q

divA=0 in Q
A-n=0 on 00
curlAXxn=vxn ondfQ
QLH(m; Q);

the scalar function y solution to

Ax =divv inQ
x=0 on 0Q;

the vector field 1, orthogonal projection of v on H(e; Q2).
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Helmholtz decomposition

Helmholtz decomposition (cont'd)

The orthogonality is easily checked:

/curIA-gradX:/A-curlgradx—/ nxgrady-A=0
Q Q N

/curIA-n:/A-curln—/ nxn-A=0,

Q Q oQ
/gradx-n:—/xdivn—l—/ xn-n=0.
Q Q 0

Moreover we have

curl(v—curlA—grady — 1) =0 inQ
div(v—curlA—gradx —m) =0 inQ
(v—curlA—grady —m) xn=0 on 09.
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Helmholtz decomposition

Helmholtz decomposition (cont'd)

Hence we have found

(v—curlA—gradx — n) € H(e; Q),
but we also have

(v—curlA—grad x — n)LH(e; Q),

therefore v = curl A + grad x + 7. 0
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Helmholtz decomposition

The characterization theorem for vector potentials

We can conclude with

Theorem (13)

The following statements are equivalent:

@ there exists a vector field w such that v = curlw in Q
o divv=0inQ and vLH(e; Q).

Proof. We have only to check that curlw L H(e; Q). Taking
n € H(e; Q) we have

/curlw-n:/w-curln—/ nxn-w=0. O
Q Q o2
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Helmholtz decomposition

Back to the harmonic fields

It is now useful trying to characterize the spaces of harmonic fields
H(m; Q) and H(e; Q).

Let us start from the latter. Denote by (0Q);, j =0,1,...,p, the
connected components of 9 ((0Q)o being the external one).

Theorem (14)

The space H(e; Q) is finite dimensional. Its dimension is p (one
less than the number of the connected components of 052). A
basis is given by grad w;, j = 1,..., p, where w; is the solution of

Aw; =0 in Q
wj =0 on 9Q \ (09);
wj =1 on (09); .

A. Valli Potentials, Helmholtz decomposition, de Rham cohomology



Helmholtz decomposition

Back to the harmonic fields (cont'd)

Proof. Clearly, grad w; € H(e; Q). It is enough to show that they
give a basis. From -7 ; ajgrad w; = 0 we find

ZJP:1 ajw; = const. Since all the w; are 0 on (0R)o, it follows
Zf:l ajw; = 0in Q. But Zf:l ajw; = oy on (0), hence

ay = 0 foreach k =1,...,p, and grad w; are linearly independent.
Take now 1 € H(e; ). We already know that there exists g such
that grad g = 7. Due to the boundary condition gradg x n =0
we know that g is constant on each connected component (09);,
Jj=0,1,...,p (and on (0Q)o we can suppose that it is vanishing).
Define f3; = q|(aq);, j = 1,.. ., p, and consider z = q — Zj’?zl Bjw;.
We have Az=0in Qand z=0o0n (0Q)k, k=0,1,...,p.
Therefore we obtain z =0, hence g = >_%_; Bjw; in Q, and

J
grad w; are generators. O
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Helmholtz decomposition

Back to the characterization theorem for vector potentials

This characterization of H(e; Q) permits to rephrase the main
theorem on vector potentials.

Theorem (15)

The following statements are equivalent:

@ there exists a vector field w such that v = curlw in Q

° divv:OinQandf(aﬂ)jVonzoforeachjzl,...,p.

Proof. We have only to check the meaning of the condition
v1H(e; Q). We find, by integration by parts

0 = Jov-gradw; = — [qdivvw;+ [;ov-nw;
:f(aﬂ)j"'"' 0
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Helmholtz decomposition

Another theorem for vector potentials (rephrased)

We are now in a condition to prove a result we stated before.

Theorem (16)

Assume that a divergence-free vector field B has vanishing flux on
each closed surface in 2. Then there exists of a vector field A such
that curl A = B.

Proof. Nothing has to be proved if the boundary of Q is
connected. If it is not connected, slightly “inflating” a connected
component (0€); we find a closed surface S; in Q. From the
divergence theorem, the flux of B on §; is equal to the flux of B on
(092);, hence the latter is vanishing. O
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Homology and de Rham cohomology

Homology and de Rham cohomology

The characterization of H(m; Q) is less straightforward, and needs
a (very) brief dive in the theory of algebraic topology. First of all,
two definitions:

o the first homology group is given, roughly speaking, by the
quotient between the cycles and the bounding cycles in 2.

@ the first de Rham cohomology group is given by the quotient
between the curl-free vector fields and the gradients defined in
Q.
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Homology and de Rham cohomology

de Rham

b

Georges de Rham (1903-1990).

[Thanks to Oscar Burlet, Souvenirs de Georges de Rham, 2004, for
this picture and the following ones.|
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Homology and de Rham cohomology

de Rham (cont'd)

A parenthesis, on a different topic:

Claire-Eliane
Engel

Storia
dell’alpinismo

Fra la folla degli alpinisti svizzeri figurano arrampicatori
di gran classe: André Roch, Georges de Rham, E.-R. Blan-

chet, morto qualche anno addietro, René Dittert e altri an-
cora.

La tecnica dei chiodi ha reso acces-
sibile la cresta pit difficile, quella di Furggen, con I'immen-
so strapiombo. Nel 1941 Alfred Perina, Luigi Carrel e Jac-
ques Chiara risalgono completamente il Grand Ressaut in
scalata artificiale. Evidentemente & il modo di risolvere
quella scalata asperrima. Da allora la via & stata rifatta dal
professor G. de Rham e Alfred Tissiere di Losanna, poi da
Lionel Terray e Louis Lachenal nel luglio 1947.
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Homology and de Rham cohomology

de Rham (cont'd)
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Homology and de Rham cohomology

Furggen ridge: second climbing
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Homology and de Rham cohomology

Homology and de Rham cohomology (cont'd)

Theorem (de Rham)

The first homology group and the first de Rham cohomology group
are finitely generated, and have the same rank, that is given by g,
the first Betti number of Q.

In other words, the first homology group is generated by g
independent (classes of equivalence of) non-bounding cycles in €,
and the first de Rham cohomology group is generated by g
independent (classes of equivalence of) loop fields in Q (namely,
curl-free vector fields that cannot be represented as gradients in Q).

Let us denote by {0k }k=1,. 5, a set of cycles such that their
classes of equivalence {[o]}k=1,. ¢ are generators of the first
homology group.
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Homology and de Rham cohomology

Homology and de Rham cohomology (cont'd)

Theorem (17)

A set of generators of the first de Rham cohomology group is given
by the classes of equivalence of g loop fields p, such that

f ﬁk~dS:1 9 fﬁde:O fOf/;ék
oK o)

Proof. It is enough to show that [p,] are linearly independent. If
>k cklpi] = 0 (namely, if >°, axp, = grad x), integrating on o

we have
Ozj{Zakﬁk-ds:a/. ]
gl k
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Homology and de Rham cohomology

Back to the harmonic fields

Denote by wy the solution of the Neumann problem
{ Awy = div py in Q
gradwy, -n=p,-n ondN.
We have
Theorem (18)

The space H(m; ) is finite dimensional. Its dimension is g, the
first Betti number of Q. A basis is given by p, = p, — grad wy,
k=1,...,g.

A. Valli Potentials, Helmholtz decomposition, de Rham cohomology



Homology and de Rham cohomology

Back to the harmonic fields (cont'd)

Proof. The p, are linearly independent, as, from ", axp, =0,
integrating on o; we find

0 = fg, Dok Py - ds = fgl >k oklpr —gradwy] - ds
= fo—, Dok kP - ds = ay.

Let p € H(m; Q). Its class of equivalence [p] is an element of the
first de Rham cohomology group, hence we can write
(0] =D Bulpe] » p=_ Bipi+eradx,
k

k
and clearly x satisfies

AX = — Zk IBkdiVﬁk = — Ek BkAwk in
gradx -n=—>, Bkp-n=—>", frgradwy -n on 9Q.
Hence grad x = — ), Bkgradwy and p = >, Bipy. O
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Homology and de Rham cohomology

Back to the characterization theorem for scalar potentials

This characterization of H(m; Q) permits to rephrase the main
theorem on scalar potentials.

Theorem (19)

The following statements are equivalent:

@ there exists a scalar function ¢ such that v = grad ¢ in Q
o curlv=0inQ andfgkv-ds:O foreach k=1,....g.

Proof. It is enough to show that a curl-free vector field v with

j;ak v-ds =0 for each k =1,...,g can be written as a gradient.
First of all, since it is curl-free, from (6) we know that

v=grady + p, and p =", Bikpy. Integrating on o it follows
Ozfglv-ds:fgl >k Bkpy - ds = By, hence v = grad 1. O
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Homology and de Rham cohomology

Homotopy or homology?

A question was left apart: do we have examples of homologically
trivial domains that are not simply-connected?
Let us recall the definitions:

@ a domain Q is said simply-connected (or homotopically trivial)
if any cycle ¢ can be retracted in Q to a point p € 2

@ a domain € is said homologically trivial if any cycle c is the
boundary of a surface S C Q.

Clearly, if a cycle can be retracted to a point, it is also the
boundary of a surface. Hence, a simply-connected domain is
homologically trivial.

However, there are cycles that are the boundary of a surface, but
that cannot be retracted (consider the complement in a box of the
trefoil knot, and take a cycle... as explained in the picture).
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The trefoil knot

The trefoil knot and its Seifert surface.

[Image produced with SeifertView, Jarke J. van Wijk, Technische
Universiteit Eindhoven.]
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Homotopy or homology? (cont'd)

This seems to suggest that there exist homologically trivial
domains that are not simply-connected. However, what we have
seen is not an example of this fact, as, if we look at the previous
picture, in the complement of the trefoil knot there is another
cycle that is not bounding a surface.

So, try to refine the analysis: it is worth noting that, in the
engineering literature, this example is indeed the basis for the
statement that “homologically trivial” is a less restrictive than
“simply-connected”. The reason is that, considering the
complement in a box of the trefoil knot together with its Seifert
surface, we have cut the latter cycle (the one that is
non-bounding), without cutting the former (the one that is
bounding but cannot be retracted).
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Homotopy or homology? (cont'd)

Let us jump to the conclusion:

Theorem (Borsuk, Benedetti—Frigerio—Ghiloni)

Let Q C R3 be a bounded domain with Lipschitz boundary. Then
it is simply-connected if and only if it is homologically trivial.

And what we have told just above? There is a subtle mistake in
the argument: we have not cut the former cycle, but we have cut
the surface of which it was the boundary!

It can be easily checked that now it is not a bounding cycle (in the
electrical engineering language, it links the current running along
the Seifert surface).
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Homotopy or homology? (cont'd)

Conclusion: you are lucky.

It is true that, speaking about the operators grad, div, curl,
homology (and not homotopy) is the right concept. But we can
still use the words “a simply-connected domain”, as it has the
same meaning of “a homologically trivial domain”.
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