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The objects

Beyond a doubt, among the “stars” of vector calculus we have the
operators

grad

div

curl

Aim of this talk is to understand better their properties and their
connections with some topological concepts.
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First results

First well-known results are (just compute...):

curl gradψ = 0 for each scalar function ψ

div curlH = 0 for each vector field H.

We can thus write

Theorem (1)

If H = gradψ, then curlH = 0 (namely, H is curl-free).

Theorem (2)

If B = curl A, then divB = 0 (namely, B is divergence-free).
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First results (cont’d)

The natural question is:

are these conditions sufficient?

We will see that the answer depends on the geometry of the region
Ω where we are working.
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In the whole space...

Let us start from Ω = R3. We need some tools. First of all we
know [just compute...] that the function

K (x, y) =
1

4π

1

|x− y|
(1)

satisfies
−∆xK (x, y) = 0 for x 6= y∫
∂B grad xK (x, 0) · n(x) dSx = −1 ,

where B is the ball of center 0 and radius 1, and n the unit
outward normal on ∂B.
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Dirac δ0 distribution

[Indeed, in a more advanced mathematical language, the function
K (x, y) is the fundamental solution of the −∆ operator, namely, it
satisfies −∆xK (x, y) = δ0(x− y) in the distributional sense, δ0
being the Dirac delta distribution centered at 0.
Roughly speaking, for each (suitable...) function f the Dirac delta
distribution satisfies∫

R3

δ0(x− y)f (y) dy = f (x) .

We also know that the function

u(x) =

∫
R3

K (x, y)f (y) dy

satisfies −∆u = f in R3. In fact (formally...)

−∆u(x) = −∆x [
∫
R3 K (x, y)f (y) dy] =

∫
R3 [−∆xK (x, y)]f (y) dy

=
∫
R3 δ0(x− y)f (y) dy = f (x) .]
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Scalar and vector potentials

Let us come to the determination of a scalar potential for a
curl-free vector field H (namely, a scalar function ψ such that
gradψ = H) and of a vector potential A for a divergence-free
vector field B (namely, a vector field A such that curl A = B).

Consider a vector field H and define in R3 the function

ψ(x) = −
∫
R3

K (x, y)divH(y) dy . (2)

Consider a vector field B and define in R3 the vector field

A(x) =

∫
R3

K (x, y)curl B(y) dy . (3)
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Theorems

Theorem (3)

Assume that H decays sufficiently fast at infinity and satisfies
curlH = 0 in R3. The function ψ satisfies gradψ = H in R3.

Proof. It is easily shown that

Dxi K (x, y) = − 1

4π

xi − yi
|x− y|3

= −Dyi K (x, y) ,

hence (formally, and using that DiHj = DjHi ...)

Diψ(x) = −
∫
R3 Dxi K (x, y)divH(y) dy =

∫
R3 Dyi K (x, y)divH(y) dy

= −
∑

j

∫
R3 Dyj Dyi K (x, y)Hj(y) dy =

∑
j

∫
R3 Dyj K (x, y)DiHj(y) dy

=
∑

j

∫
R3 Dyj K (x, y)DjHi (y) dy = −

∫
R3 ∆yK (x, y)Hi (y) dy

=
∫
R3 δ0(x− y)Hi (y) dy = Hi (x) . �
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Theorems (cont’d)

Theorem (4)

Assume that B decays sufficiently fast at infinity and satisfies
divB = 0 in R3. The vector field A satisfies curl A = B (and
divA = 0) in R3 .

Proof. We have

D1A2(x) =
∫
R3 Dx1K (x, y)(D3B1 − D1B3)(y) dy

= −
∫
R3 Dy1K (x, y)(D3B1 − D1B3)(y) dy

=
∫
R3 [−Dy1Dy1K (x, y)B3(y) + Dy3Dy1K (x, y)B1(y)] dy

=
∫
R3 [−Dy1Dy1K (x, y)B3(y)− Dy3K (x, y)D1B1(y)] dy .

Similarly,

D2A1(x) =

∫
R3

[Dy2Dy2K (x, y)B3(y) + Dy3K (x, y)D2B2(y)] dy .
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Theorems (cont’d)

Since D1B1 + D2B2 = −D3B3, we find

−
∫
R3 Dy3K (x, y)[D1B1(y) + D2B2(y)] dy

=
∫
R3 Dy3K (x, y)D3B3(y) dy = −

∫
R3 Dy3Dy3K (x, y)B3(y) dy ,

hence
D1A2(x)− D2A1(x) = −

∫
R3 ∆yK (x, y)B3(y) dy

=
∫
R3 δ0(x− y)B3(y) dy = B3(x) .

Repeating the same computations for the other components, the
first part of the thesis follows.
On the other hand

D1A1(x) = −
∫
R3 Dy1K (x, y)(D2B3 − D3B2)(y) dy

= −
∫
R3 [Dy1K (x, y)D2B3(y)− Dy3K (x, y)D1B2(y)] dy ,

and, proceding similary for D2A2 and D3A3, the second part of the
thesis is easily verified. �
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Leading idea

What has been the idea?

If ψ satisfies gradψ = H, then

−divH = −div gradψ = −∆ψ ,

hence we can use the (scalar) integral representation formula
in terms of the fundamental solution K ;

if A satisfies curl A = B (and divA = 0), then

curl B = curl curl A = curl curl A− graddivA = −∆A ,

hence we can use the (vector) integral representation formula
in terms of the fundamental solution K .
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Biot–Savart formulas

An alternative (and essentially equivalent) point of view is the one
leading to the Biot–Savart formulas:

Scalar potential: look for ψ = div gradϕ.

If ψ satisfies gradψ = H, then

H = grad div gradϕ = ∆ gradϕ ,

hence

gradϕ = −
∫
R3

K (x, y)H(y) dy

and

ψ(x) =
1

4π

∫
R3

x− y

|x− y|3
·H(y) dy . (4)
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Biot–Savart formulas (cont’d)

Vector potential: look for A = curlQ (with divQ = 0).

If A satisfies curl A = B, then

B = curl curlQ = −∆Q ,

hence

Q(x) =

∫
R3

K (x, y)B(y) dy

and

A(x) =
1

4π

∫
R3

y − x

|x− y|3
× B(y) dy . (5)
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In a bounded domain...

The problem is more complicated in a bounded domain Ω.
However, some well-known results are usually presented in any
calculus course.

Theorem (5)

Assume that H satisfies curlH = 0 in Ω and that any closed curve
in Ω is the boundary of a suitable surface S ⊂ Ω. Then there
exists a scalar function ψ satisfying gradψ = H in Ω.

Proof. Since the flux of curlH is vanishing on each surface S ,
from the Stokes theorem the line integral of H on each closed
curve in Ω is vanishing. �
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In a bounded domain... (cont’d)

A domain Ω for which any closed curve c ⊂ Ω is the boundary
of a surface S ⊂ Ω is called homologically trivial.

Many of you could have in mind the following definition: a domain
Ω is said to be simply-connected if any closed curve c ⊂ Ω can be
retracted in Ω to a point p ∈ Ω. [Using a different language, it is
called homotopically trivial.]
The preceding theorem has clarified this fact: for establishing if a
curl-free vector field is a gradient, the relevant geometrical
property is related to homology, not to homotopy.

Question (left apart... but we will come back to it):

A simply-connected domain is clearly homologically trivial. Do
we have examples of homologically trivial domains that are
not simply-connected?
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In a bounded domain... (cont’d)

Concerning the vector potential, we have the (less known...) result:

Theorem (6)

Assume that B satisfies divB = 0 in Ω and that any closed surface
in Ω is the boundary of a suitable subdomain D ⊂ Ω. Then there
exists a scalar function A satisfying curl A = B in Ω.

Proof. Since the integral of divB is vanishing in each subdomain
D, from the divergence theorem the flux of B on each closed
surface in Ω is vanishing. This is enough to guarantee the
existence of a vector potential A (more details later on...). �
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In a bounded domain... (cont’d)

Other simple results are the following:

Theorem (7)

Assume that H satisfies curlH = 0 in Ω and H× n = 0 on ∂Ω.
Then there exists a scalar function ψ satisfying gradψ = H in Ω.

Proof. Extend H by 0 outside Ω; since H× n = 0 on ∂Ω, the
extension is still curl-free, therefore it is the gradient of a scalar
potential in R3. �
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In a bounded domain... (cont’d)

Theorem (8)

Assume that B satisfies divB = 0 in Ω and B · n = 0 on ∂Ω. Then
there exists a vector field A satisfying curl A = B in Ω.

Proof. Extend B by 0 outside Ω; since B · n = 0 on ∂Ω, the
extension is still divergence-free, therefore it is the curl of a vector
potential in R3. �

But: can we find necessary and sufficient conditions?
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Helmholtz

Hermann von Helmholtz (1821–1894),
in a painting by Hans Schadow (1891).
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Harmonic fields

A way for finding the answer is the resort to the so-called
Helmholtz decomposition: any vector field can be written as the
sum of a gradient and a curl.

For stating the precise results we need the definitions of the spaces
of harmonic fields:

H(m; Ω) = {w ∈ (L2(Ω))3 | curl w = 0, divw = 0,w · n = 0 on ∂Ω}

H(e; Ω) = {w ∈ (L2(Ω))3 | curl w = 0, divw = 0,w × n = 0 on ∂Ω} .

Note that an element of H(m; Ω) can be written as the curl of a
vector potential, an element of H(e; Ω) can be written as the
gradient of a scalar potential.
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Harmonic fields (cont’d)

A preliminary remark about the structure of these spaces: they are
“reading” some topological properties of the domain Ω. In fact:

Theorem (9)

Let Ω be topologically equivalent to a ball. Then H(m; Ω) = {0}
and H(e; Ω) = {0}.
Proof. Let w ∈ H(m; Ω) or w ∈ H(e; Ω). Since a ball is
homologically trivial, we have w = gradψ, where ψ satisfies
∆ψ = 0 in Ω. When w ∈ H(m; Ω) we also have gradψ · n = 0 on
∂Ω. Well-known results on the Neumann problem furnish
gradψ = 0 in Ω. When w ∈ H(e; Ω), we also have gradψ× n = 0
on ∂Ω. Since ∂Ω is connected, we obtain ψ = const on ∂Ω.
Well-known results on the Dirichlet boundary value problem for the
Laplace operator give ψ = const and gradψ = 0 in Ω. �
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Harmonic fields (cont’d)

A doubt:

Have we examples of non-trivial harmonic fields?

The answer is “yes”.

Take the magnetic field generated in the vacuum by a current
of constant intensity I 0 passing along the x3-axis: as it is
well-known, for x2

1 + x2
2 > 0 it is given by

H(x1, x2, x3) =
I 0

2π

(
− x2

x2
1 + x2

2

,
x1

x2
1 + x2

2

, 0

)
.

As Maxwell equations require, one sees that curlH = 0 and
divH = 0. Consider the torus T obtained by rotating a disk
(contained in the plane {x2 = 0}) around the x3-axis: it is
easily checked that H · n = 0 on ∂T . Hence we have found a
non-trivial harmonic field H ∈ H(m; T ).
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Harmonic fields (cont’d)

Consider the electric field generated in the vacuum by a
pointwise charge ρ0 placed at the origin. For x 6= 0 it is given
by

E(x1, x2, x3) =
ρ0

4πε0

x

|x|3
,

where ε0 is the electric permittivity of the vacuum. It satisfies
divE = 0 and curl E = 0, and moreover E× n = 0 on the
boundary of C = BR2 \ BR1 (here 0 < R1 < R2, and BR is the
ball of centre 0 and radius R). We have thus found a
non-trivial harmonic field E ∈ H(e; C ).
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Helmholtz decomposition

Theorem (10)

Any vector function v ∈ (L2(Ω))3 can be decomposed into the
following sum

v = curlQ + gradψ + ρ , (6)

where ρ ∈ H(m; Ω) (hence it can be written as the curl of a vector
potential), and each term of the decomposition is orthogonal to
the others.
Moreover, if curl v = 0 in Ω it follows Q = 0, if div v = 0 in Ω and
v · n = 0 on ∂Ω one has gradψ = 0, and if v⊥H(m; Ω) one finds
ρ = 0.
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Helmholtz decomposition (cont’d)

Proof. Take: the vector field Q solution to
curl curlQ = curl v in Ω
divQ = 0 in Ω
Q× n = 0 on ∂Ω
Q⊥H(e; Ω) ;

the scalar function ψ solution to{
∆ψ = div v in Ω
gradψ · n = v · n on ∂Ω ;

the vector field ρ, orthogonal projection of v on H(m; Ω).
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Helmholtz decomposition (cont’d)

The orthogonality is easily checked:∫
Ω
curlQ · gradψ =

∫
Ω
Q · curl gradψ +

∫
∂Ω

n×Q · gradψ = 0∫
Ω
curlQ · ρ =

∫
Ω
Q · curlρ +

∫
∂Ω

n×Q · ρ = 0 ,∫
Ω
gradψ · ρ = −

∫
Ω
ψ divρ +

∫
∂Ω
ψ n · ρ = 0 .

Moreover we have
curl (v − curlQ− gradψ − ρ) = 0 in Ω
div (v − curlQ− gradψ − ρ) = 0 in Ω
(v − curlQ− gradψ − ρ) · n = 0 on ∂Ω

(recall that Q× n = 0 gives curlQ · n = 0 on ∂Ω),
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Helmholtz decomposition (cont’d)

Hence we have found

(v − curlQ− gradψ − ρ) ∈ H(m; Ω) ,

but we also have

(v − curlQ− gradψ − ρ)⊥H(m; Ω) ,

therefore v = curlQ + gradψ + ρ. �
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The characterization theorem for scalar potentials

We can conclude with

Theorem (11)

The following statements are equivalent:

there exists a scalar function ϕ such that v = gradϕ in Ω

curl v = 0 in Ω and v⊥H(m; Ω).

Proof. We have only to check that gradϕ⊥H(m; Ω). Taking
ρ ∈ H(m; Ω) we have∫

Ω
gradϕ · ρ = −

∫
Ω
ϕdivρ +

∫
∂Ω
ϕn · ρ = 0 . �
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Helmholtz decomposition

Theorem (12)

Any vector function v ∈ (L2(Ω))3 can be decomposed into the
following sum

v = curl A + gradχ+ η , (7)

where η ∈ H(e; Ω) (hence it can be written as the gradient of a
scalar potential), and each term of the decomposition is orthogonal
to the others.
Moreover, if curl v = 0 in Ω and v × n = 0 on ∂Ω it follows
A = 0, if div v = 0 in Ω one has gradχ = 0, and if v⊥H(e; Ω)
one finds η = 0.
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Helmholtz decomposition (cont’d)

Proof. Take: the vector field A solution to
curl curl A = curl v in Ω
divA = 0 in Ω
A · n = 0 on ∂Ω
curl A× n = v × n on ∂Ω
Q⊥H(m; Ω) ;

the scalar function χ solution to{
∆χ = div v in Ω
χ = 0 on ∂Ω ;

the vector field η, orthogonal projection of v on H(e; Ω).

A. Valli Potentials, Helmholtz decomposition, de Rham cohomology



Introduction
Scalar and vector potentials in the whole space

Scalar and vector potentials in a bounded domain
Helmholtz decomposition

Homology and de Rham cohomology

Helmholtz decomposition (cont’d)

The orthogonality is easily checked:∫
Ω
curl A · gradχ =

∫
Ω
A · curl gradχ−

∫
∂Ω

n× gradχ · A = 0

∫
Ω
curl A · η =

∫
Ω
A · curlη −

∫
∂Ω

n× η · A = 0 ,∫
Ω
gradχ · η = −

∫
Ω
χdivη +

∫
∂Ω
χn · η = 0 .

Moreover we have
curl (v − curl A− gradχ− η) = 0 in Ω
div (v − curl A− gradχ− η) = 0 in Ω
(v − curl A− gradχ− η)× n = 0 on ∂Ω .
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Helmholtz decomposition (cont’d)

Hence we have found

(v − curl A− gradχ− η) ∈ H(e; Ω) ,

but we also have

(v − curl A− gradχ− η)⊥H(e; Ω) ,

therefore v = curl A + gradχ+ η. �
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The characterization theorem for vector potentials

We can conclude with

Theorem (13)

The following statements are equivalent:

there exists a vector field w such that v = curl w in Ω

div v = 0 in Ω and v⊥H(e; Ω).

Proof. We have only to check that curl w⊥H(e; Ω). Taking
η ∈ H(e; Ω) we have∫

Ω
curl w · η =

∫
Ω
w · curlη −

∫
∂Ω

n× η ·w = 0 . �
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Back to the harmonic fields

It is now useful trying to characterize the spaces of harmonic fields
H(m; Ω) and H(e; Ω).
Let us start from the latter. Denote by (∂Ω)j , j = 0, 1, . . . , p, the
connected components of ∂Ω ((∂Ω)0 being the external one).

Theorem (14)

The space H(e; Ω) is finite dimensional. Its dimension is p (one
less than the number of the connected components of ∂Ω). A
basis is given by gradwj , j = 1, . . . , p, where wj is the solution of

∆wj = 0 in Ω
wj = 0 on ∂Ω \ (∂Ω)j
wj = 1 on (∂Ω)j .
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Back to the harmonic fields (cont’d)

Proof. Clearly, gradwj ∈ H(e; Ω). It is enough to show that they
give a basis. From

∑p
j=1 αjgradwj = 0 we find∑p

j=1 αjwj = const. Since all the wj are 0 on (∂Ω)0, it follows∑p
j=1 αjwj = 0 in Ω. But

∑p
j=1 αjwj = αk on (∂Ω)k , hence

αk = 0 for each k = 1, . . . , p, and gradwj are linearly independent.
Take now η ∈ H(e; Ω). We already know that there exists q such
that grad q = η. Due to the boundary condition grad q × n = 0
we know that q is constant on each connected component (∂Ω)j ,
j = 0, 1, . . . , p (and on (∂Ω)0 we can suppose that it is vanishing).
Define βj = q|(∂Ω)j , j = 1, . . . , p, and consider z = q −

∑p
j=1 βjwj .

We have ∆z = 0 in Ω and z = 0 on (∂Ω)k , k = 0, 1, . . . , p.
Therefore we obtain z = 0, hence q =

∑p
j=1 βjwj in Ω, and

gradwj are generators. �
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Back to the characterization theorem for vector potentials

This characterization of H(e; Ω) permits to rephrase the main
theorem on vector potentials.

Theorem (15)

The following statements are equivalent:

there exists a vector field w such that v = curl w in Ω

div v = 0 in Ω and
∫

(∂Ω)j
v · n = 0 for each j = 1, . . . , p.

Proof. We have only to check the meaning of the condition
v⊥H(e; Ω). We find, by integration by parts

0 =
∫

Ω v · gradwj = −
∫

Ω div vwj +
∫
∂Ω v · nwj

=
∫

(∂Ω)j
v · n . �

A. Valli Potentials, Helmholtz decomposition, de Rham cohomology



Introduction
Scalar and vector potentials in the whole space

Scalar and vector potentials in a bounded domain
Helmholtz decomposition

Homology and de Rham cohomology

Another theorem for vector potentials (rephrased)

We are now in a condition to prove a result we stated before.

Theorem (16)

Assume that a divergence-free vector field B has vanishing flux on
each closed surface in Ω. Then there exists of a vector field A such
that curl A = B.

Proof. Nothing has to be proved if the boundary of Ω is
connected. If it is not connected, slightly “inflating” a connected
component (∂Ω)j we find a closed surface Sj in Ω. From the
divergence theorem, the flux of B on Sj is equal to the flux of B on
(∂Ω)j , hence the latter is vanishing. �
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Homology and de Rham cohomology

The characterization of H(m; Ω) is less straightforward, and needs
a (very) brief dive in the theory of algebraic topology. First of all,
two definitions:

the first homology group is given, roughly speaking, by the
quotient between the cycles and the bounding cycles in Ω.

the first de Rham cohomology group is given by the quotient
between the curl-free vector fields and the gradients defined in
Ω.
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de Rham

Georges de Rham (1903–1990).

[Thanks to Oscar Burlet, Souvenirs de Georges de Rham, 2004, for
this picture and the following ones.]
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de Rham (cont’d)

A parenthesis, on a different topic:
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de Rham (cont’d)
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Furggen ridge: second climbing
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Homology and de Rham cohomology (cont’d)

Theorem (de Rham)

The first homology group and the first de Rham cohomology group
are finitely generated, and have the same rank, that is given by g,
the first Betti number of Ω.

In other words, the first homology group is generated by g
independent (classes of equivalence of) non-bounding cycles in Ω,
and the first de Rham cohomology group is generated by g
independent (classes of equivalence of) loop fields in Ω (namely,
curl-free vector fields that cannot be represented as gradients in Ω).

Let us denote by {σk}k=1,...,g , a set of cycles such that their
classes of equivalence {[σk ]}k=1,...,g are generators of the first
homology group.
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Homology and de Rham cohomology (cont’d)

Theorem (17)

A set of generators of the first de Rham cohomology group is given
by the classes of equivalence of g loop fields ρ̂k such that∮

σk

ρ̂k · ds = 1 ,

∮
σl

ρ̂k · ds = 0 for l 6= k .

Proof. It is enough to show that [ρ̂k ] are linearly independent. If∑
k αk [ρ̂k ] = 0 (namely, if

∑
k αk ρ̂k = gradχ), integrating on σl

we have

0 =

∮
σl

∑
k

αk ρ̂k · ds = αl . �
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Back to the harmonic fields

Denote by ωk the solution of the Neumann problem{
∆ωk = div ρ̂k in Ω
gradωk · n = ρ̂k · n on ∂Ω .

We have

Theorem (18)

The space H(m; Ω) is finite dimensional. Its dimension is g , the
first Betti number of Ω. A basis is given by ρk = ρ̂k − gradωk ,
k = 1, . . . , g.
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Back to the harmonic fields (cont’d)

Proof. The ρk are linearly independent, as, from
∑

k αkρk = 0,
integrating on σl we find

0 =
∮
σl

∑
k αkρk · ds =

∮
σl

∑
k αk [ρ̂k − gradωk ] · ds

=
∮
σl

∑
k αk ρ̂k · ds = αl .

Let ρ ∈ H(m; Ω). Its class of equivalence [ρ] is an element of the
first de Rham cohomology group, hence we can write

[ρ] =
∑
k

βk [ρ̂k ] , ρ =
∑
k

βk ρ̂k + gradχ ,

and clearly χ satisfies{
∆χ = −

∑
k βkdiv ρ̂k = −

∑
k βk∆ωk in Ω

gradχ · n = −
∑

k βk ρ̂k · n = −
∑

k βkgradωk · n on ∂Ω .

Hence gradχ = −
∑

k βkgradωk and ρ =
∑

k βkρk . �
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Back to the characterization theorem for scalar potentials

This characterization of H(m; Ω) permits to rephrase the main
theorem on scalar potentials.

Theorem (19)

The following statements are equivalent:

there exists a scalar function ϕ such that v = gradϕ in Ω

curl v = 0 in Ω and
∮
σk

v · ds = 0 for each k = 1, . . . , g.

Proof. It is enough to show that a curl-free vector field v with∮
σk

v · ds = 0 for each k = 1, . . . , g can be written as a gradient.
First of all, since it is curl-free, from (6) we know that
v = gradψ + ρ, and ρ =

∑
k βkρk . Integrating on σl it follows

0 =
∮
σl
v · ds =

∮
σl

∑
k βkρk · ds = βl , hence v = gradψ. �
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Homotopy or homology?

A question was left apart: do we have examples of homologically
trivial domains that are not simply-connected?
Let us recall the definitions:

a domain Ω is said simply-connected (or homotopically trivial)
if any cycle c can be retracted in Ω to a point p ∈ Ω

a domain Ω is said homologically trivial if any cycle c is the
boundary of a surface S ⊂ Ω.

Clearly, if a cycle can be retracted to a point, it is also the
boundary of a surface. Hence, a simply-connected domain is
homologically trivial.
However, there are cycles that are the boundary of a surface, but
that cannot be retracted (consider the complement in a box of the
trefoil knot, and take a cycle... as explained in the picture).
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The trefoil knot

The trefoil knot and its Seifert surface.

[Image produced with SeifertView, Jarke J. van Wijk, Technische
Universiteit Eindhoven.]
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Homotopy or homology? (cont’d)

This seems to suggest that there exist homologically trivial
domains that are not simply-connected. However, what we have
seen is not an example of this fact, as, if we look at the previous
picture, in the complement of the trefoil knot there is another
cycle that is not bounding a surface.

So, try to refine the analysis: it is worth noting that, in the
engineering literature, this example is indeed the basis for the
statement that “homologically trivial” is a less restrictive than
“simply-connected”. The reason is that, considering the
complement in a box of the trefoil knot together with its Seifert
surface, we have cut the latter cycle (the one that is
non-bounding), without cutting the former (the one that is
bounding but cannot be retracted).
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Homotopy or homology? (cont’d)

Let us jump to the conclusion:

Theorem (Borsuk, Benedetti–Frigerio–Ghiloni)

Let Ω ⊂ R3 be a bounded domain with Lipschitz boundary. Then
it is simply-connected if and only if it is homologically trivial.

And what we have told just above? There is a subtle mistake in
the argument: we have not cut the former cycle, but we have cut
the surface of which it was the boundary!

It can be easily checked that now it is not a bounding cycle (in the
electrical engineering language, it links the current running along
the Seifert surface).
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Homotopy or homology? (cont’d)

Conclusion: you are lucky.

It is true that, speaking about the operators grad , div, curl ,
homology (and not homotopy) is the right concept. But we can
still use the words “a simply-connected domain”, as it has the
same meaning of “a homologically trivial domain”.
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