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Time-harmonic eddy current problems

-

Maxwell equations + time-harmonic structure (for a given
frequency w # 0) + low frequency lead to:

-

curlH—-cE=J. InQ
curlE+wpH =0 InQ (1)
div(eE) =0 in Q!
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Time-harmonic eddy current problems

-

Maxwell equations + time-harmonic structure (for a given
frequency w # 0) + low frequency lead to:

-

curlH—-cE=J. InQ

curl E 4+ iwpH =0 In € (1)

div(eE) =0 in Q!
where E and H are the electric field and magnetic field, re-
spectively, e Is the electric permittivity, p is the magnetic per-
meability, o Is the conductivity, and J. is the applied density

current. Moreover, the domain 2 is split into two parts, the

|
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Lconductor Q¢ and the insulator 27, where o = 0.



Boundary conditions

.

wo possible alternatives:

o |
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Boundary conditions

.

wo possible alternatives:
# infinitely permeable iron

Hxn=0 onof
eE-n=0 o0nof
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Boundary conditions

.

wo possible alternatives:
# Infinitely permeable iron

Hxn=0 onof
eE-n=0 o0nof

#» perfect conductor

E xn=0 ono.
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Boundary conditions

.

wo possible alternatives:
# infinitely permeable iron

Hxn=0 onof
eE-n=0 o0nof

# perfect conductor

E xn=0 ono.

[We will consider (2).]
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Topological additional conditions

-

In general topology (“handles”, “holes”) one has to add

-

eE-n=0 Vjy=1,...,pr
{fFJ (3)

fzkeE-n:O VE=1,...,n50.
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Topological additional conditions

-

In general topology (“handles”, “holes”) one has to add

fFjEE.n:O vj:l?"'?Z?F
fzkeE-n:O VE=1,...,n50.

-

(3)

where:

# I'; are the connected components of the interface I'
between the insulator ! and the conductor Q¢

o . C O (with 0%, c 09) are the cutting surfaces of the
non-bounding cycles lying on 02
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Topological additional conditions

-

In general topology (“handles”, “holes”) one has to add

fFjEE.n:O vj:l?"'?Z?F
fzkeE-n:O Vk=1,...,n9q,

-

(3)

where:

# I'; are the connected components of the interface I'
between the insulator ! and the conductor Q¢

o . C O (with 0%, c 09) are the cutting surfaces of the
non-bounding cycles lying on 02

[These are orthogonality conditions to the space of harmonic

Lﬁeld5wwithew-n:Oonc‘?QandwxnzoonF.] J
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General considerations

-

The unknowns of the problem are Hge, Higr, Ege, Ejqr,
but one can consider reduced problems:

-
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General considerations

-

The unknowns of the problem are Hge, Higr, Ege, Ejqr,
but one can consider reduced problems:

® Eoc and Hige can be obtained directly one from the
other
E’Qc = J_l(CHI‘lH‘QC — JGIQC)

Hge = iw Tyt curl Ege
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General considerations

-

The unknowns of the problem are Hge, Higr, Ege, Ejqr,
but one can consider reduced problems:

® Eoc and Hige can be obtained directly one from the
other
E’Qc = J_l(CHI‘lH‘QC — JGIQC)

Hge = iw tp ! curl Ege

® Hy: can be obtained directly from E g

Hor = iw tp curl E g

o |
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General considerations (cont’d)

- N

® En: can be obtained from H o and Ege by solving the
electrostatic problem

( CU_I‘IE’QI — —iwuH’QI N QI
div(eE|qr) =0 in Qf
ElQIXIl:ElQCXH onr
< (4)
eEgr-n=0 on of)
frj€E|QI'H:O \V/j:L...,pF
\kaEE’QI-n:O Vk:L...,n@Q
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General considerations (cont’d)

- N

® En: can be obtained from H o and Ege by solving the
electrostatic problem

( CU_I‘IE’QI = —iwuH’QI in Q!
div(eE|qr) =0 in Qf
: Egrxn=Eqg xn onl (4)
eEgr-n=0 on o)
frjeEmz-n:O Vi=1,...,pr
\kaEE’QI-n:O Vk:L...,n@Q

Therefore, there are many possible formulations that can be

proposed!

o |
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Possible approaches

-

Classical:
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Possible approaches
fClassi(:al: T
® (Hge, Vihqr) (scalar magnetic potential in Q!: need of
cutting surfaces for non-bounding cycles on I')

(edge elements in Q¢+ piecewise linear elements in Qf)
Then solve the electrostatic problem for E q:
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Possible approaches

o N

Classical:
® (Hge, Vihqr) (scalar magnetic potential in Q!: need of
cutting surfaces for non-bounding cycles on I')

(edge elements in Q¢+ piecewise linear elements in Qf)
Then solve the electrostatic problem for E q:

® (Eiqc, Eqr) (penalty formulation: the divergence-free

constraint is inserted in the energy functional)
(edge elements in Q¢ + nodal elements in Q1)
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Possible approaches

o N

Classical:
® (Hge, Vihqr) (scalar magnetic potential in Q!: need of
cutting surfaces for non-bounding cycles on I')

(edge elements in Q¢+ piecewise linear elements in Qf)
Then solve the electrostatic problem for E q:

® (Eiqc, Eqr) (penalty formulation: the divergence-free
constraint is inserted in the energy functional)

(edge elements in Q¢ + nodal elements in Q1)
[similar to the approach via vector magnetic potential in

() + scalar electric potential in Q¢: nodal elements in
+ piecewise linear elements in Q¢]
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Possible approaches (cont’d)

M

ore recent:
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Possible approaches (cont’d)

M N

ore recent:

® (Hige,Hqr) (saddle-point formulation: Eiq: Is a
Lagrange multiplier, and the divergence-free constraint
reenters into play) [Alonso Rodriguez, Hiptmair, V., IMA

J. Numer. Anal., 2004]
(edge elements in Q) + piecewise constant elements for

Eqr + Crouzeix-Raviart elements for the Lagrange
multiplier in Q)

o |
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M

ore recent:

Possible approaches (cont’d)

® (Hige,Hqr) (saddle-point formulation: Eiq: Is a

Lagrange multiplier, and the divergence-free constraint
reenters into play) [Alonso Rodriguez, Hiptmair, V., IMA
J. Numer. Anal., 2004]

(edge elements in Q) + piecewise constant elements for
Eqr + Crouzeix-Raviart elements for the Lagrange

multiplier in Q)
(Ejqe, Ejqr) (saddle-point formulation: a Lagrange
multiplier is needed for the divergence-free constraint)

[Alonso Rodriguez, V., ECCOMAS 2004]
(edge elements in Q) + piecewise linear elements for the

Lagrange multiplier in ) J
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*Hybrid” approaches

-

Interesting for finite element approximation, as the grids do
not need to match on the interface I'.

-

o |
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*Hybrid” approaches

- N

Interesting for finite element approximation, as the grids do

not need to match on the interface I.

® (E|qc,Hor) (saddle-point formulation: Eq: Is a
Lagrange multiplier, and the divergence-free constraint
reenters into play) [very similar to the (H g, Higr)

approach]
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*Hybrid” approaches

-

fInteresting for finite element approximation, as the grids do
not need to match on the interface I'.

® (E|qc,Hor) (saddle-point formulation: Eq: Is a
Lagrange multiplier, and the divergence-free constraint
reenters into play) [very similar to the (H g, Higr)
approach]

® (Hige,E ) (saddle-point formulation: a Lagrange
multiplier is needed for the divergence-free constraint)
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*Hybrid” approaches

-

fInteresting for finite element approximation, as the grids do
not need to match on the interface I'.

® (E|qc,Hor) (saddle-point formulation: Eq: Is a
Lagrange multiplier, and the divergence-free constraint
reenters into play) [very similar to the (H g, Higr)

approach]
® (Hige,E ) (saddle-point formulation: a Lagrange
multiplier is needed for the divergence-free constraint)

Let us see in more detall this last approach.
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(Hine, Ejqr) saddle-point formulation

-

[The following results have been published on NMPDEs, 21
(2005), 742-763.]
The problem initially reads:

-

[ Find (Hjqe, Ejqr) € H(curl; Q%) x Z; such that:

[(o7 curlH - curlv + iwpH - V) + [Vxn-E

Qc I
__ —1 -
< —Qj(;a J. - curlv (5)
fHXﬂ-Z+iw_1fu_lcurlE-curlZ: [Je -2z
r Q1 Qf

. OC
\— YV (v,z) € H(curl; Q%) x Zr , J
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(Hine, Ejqr) saddle-point formulation

-

[The following results have been published on NMPDEs, 21
(2005), 742-763.]
The problem initially reads:

-

[ Find (Hjqe, Ejqr) € H(curl; Q%) x Z; such that:

[(o7tcurlH - curl v + iwpH - V) + [V x n-E

Qc I
_ ~1 <
< —Qj(;cf J. - curlv (5)
fon°Z+iw_1fu_lcurlE-curlZ: [Je -2z
r Q1 Qf

. OC
\— YV (v,z) € H(curl; Q%) x Zr , J
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(H e, Eqr) saddle-point formulation (cont'd)

o N

where

Z; = {z € H(curl; Q) |z satisfies (6)},

namely,

( div(ez) =0 inQf
€ez-n=>0 on of)
frjez-n:O Vi=1,...,pr

| [y, €2-n=0 Vk=1,... ngq.
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(H e, Eqr) saddle-point formulation (cont'd)

o N

where

Z; = {z € H(curl; Q) |z satisfies (6)},

namely,

( div(ez) =0 inQf
€ez-n=>0 on of)
frjez-n:O Vi=1,...,pr

| [y, €2-n=0 Vk=1,... ngq.

[These are usually called gauge conditions.]
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(Hjqc, Ejqr) saddle-point formulation (cont.)

b

roblem:

o |
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(Hiqc, Eq:r) saddle-point formulation (cont.)

b

#® not easy to find a stable finite element numerical
approximation of (5)

roblem:

o |
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(Hiqc, Eq:r) saddle-point formulation (cont.)

b

#® not easy to find a stable finite element numerical
approximation of (5)

roblem:

Remedy:

o |
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(Hiqc, Eq:r) saddle-point formulation (cont.)

b

#® not easy to find a stable finite element numerical
approximation of (5)

roblem:

Remedy:
# work on smaller constrained spaces
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(Hiqc, Eq:r) saddle-point formulation (cont.)

b

#® not easy to find a stable finite element numerical
approximation of (5)

roblem:

Remedy:
# work on smaller constrained spaces
Drawback:

o |

“Hybrid” finite element approximation of time-harmonic eddy current problems — p.12/17



(Hiqc, Eq:r) saddle-point formulation (cont.)

b

#® not easy to find a stable finite element numerical
approximation of (5)

roblem:

Remedy:
# work on smaller constrained spaces
Drawback:

# the solution in Q! is no more the electric field, but a
suitable magnetic vector potential, say, A q:.

o |
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(H e, Ejqr) saddle-point formulation (cont.)

b

#® not easy to find a stable finite element numerical
approximation of (5)

roblem:

Remedy:
# work on smaller constrained spaces
Drawback:

# the solution in Q! is no more the electric field, but a
suitable magnetic vector potential, say, A q:.

We end up with the problem:

o |
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(Hige, Aqr) saddle-point formulation

[ Find (Hige, Ajgr) € X¢ x Z; such that:

[(o7tcurlH - curl v+ iwpH - V) + [V X n- A

Qc I
= [ 071, curlv (7)
91&
fH><n-Z+iw_1 f,u_lcurlA-curlZ: [Je -2z
r Qf Q1

V (v,z) € Xo X Zj,

\

|
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(Hiqc, Ajqr) saddle-point formulation (cont.)

-

where
X = {v € H(curl; Q%) | divp(v x n) = 0 on I'}
71 = {z € H(curl; Q') |z satisfies (8)} .
namely,

divz =0 in Q!
z-n=0 onoQQUI.

o |
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(Hiqc, Ajqr) saddle-point formulation (cont.)

-

where

X = {v € H(curl; Q%) | divp(v x n) = 0 on I'}

71 = {z € H(curl; Q') |z satisfies (8)} .
namely,
divz=0 in Q!
{ z-n=0 onoQuUI.

[Here, for simplicity we have assumed that 02 has no
handles and that supp J. N I" = () (so that the solution
satisfies divi(H xn) =curlH- n=J.,-n=00nT).]
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(Hiqc, Ajqr) saddle-point formulation (cont.)

-

where

X = {v € H(curl; Q%) | divp(v x n) = 0 on I'}

71 = {z € H(curl; Q') |z satisfies (8)} .
namely,
divz=0 in Q!
{ z-n=0 onoQuUI.

[Here, for simplicity we have assumed that 02 has no
handles and that supp J. N I" = () (so that the solution
satisfies divi(H xn) =curlH- n=J.,-n=00nT).]

# Itis still a constrained problem!

o |
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(Hiqc, Ajqr) saddle-point formulation (cont.)

fThe final unconstrained problem is the following: T
Find (H’QC, A.’QI, Q’F, ¢|QI) c X such that

( f(a'_lcurlHCurlv_l_zwuHV)_l_fvx nA

QC
—deVFVXHQ [ o~ 1Je curlv
QC
fH><n z+zw L' [ uwlcurl A - curlz
< g (9)

— | z-grad¢p= [ J.-Z
Q- Q1
fdiVF(HXH)P:O
r

[ A-gradi7=0
. Q!

Lfor all (v,z, P,n) € X, J
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(Hiqc, Ajqr) saddle-point formulation (cont.)

where
X = X% x H(curl; Q') x L*(I") x H}(Q))

X% = {vg € H(curl; Q%) | divp(ve x n)e L*(I)}.

o |
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(Hiqc, Ajqr) saddle-point formulation (cont.)

where
X = X% x H(curl; Q') x L*(I") x H}(Q))
X% = {vg € H(curl; Q%) | divp(ve x n)e L*(I)}.

This problem is well-posed: existence, uniqueness, stability.

o |
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(Hiqc, Ajqr) saddle-point formulation (cont.)

where

X = X% x H(curl; Q') x L*(I") x H}(Q))
X% = {vg € H(curl; Q%) | divp(ve x n)e L*(I)}.

This problem is well-posed: existence, uniqueness, stability.

» However, as we already remarked, the solution A Is

no more the electric field in ! (the “physical” electric
field does not satisfy (8)!). Indeed, it Iis a suitable
magnetic vector potential: one can define the magnetic
field in Q' by setting curl A or = —iwpH,gs, and then

L finding the electric field in ! by solving the electrostatiCJ
problem (4).
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Finite element appproximation of the saddle-point formulaion

N N

umerical approximation is now standard:
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Finite element appproximation of the saddle-point formulaion

N

#® Neédélec curl-conforming edge elements of the lowest
order for Hye

-

umerical approximation is now standard:
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Finite element appproximation of the saddle-point formulaion

N

#® Neédélec curl-conforming edge elements of the lowest
order for Hye

-

umerical approximation is now standard:

#® Nédélec curl-conforming edge elements of the lowest
order for A q:
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Finite element appproximation of the saddle-point formulaion

N

#® Neédélec curl-conforming edge elements of the lowest
order for Hye

-

umerical approximation is now standard:

#® Nédélec curl-conforming edge elements of the lowest
order for A q:

® piecewise constant elements for Q-
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Finite element appproximation of the saddle-point formulaion

N

#® Neédélec curl-conforming edge elements of the lowest
order for Hye

-

umerical approximation is now standard:

#® Nédélec curl-conforming edge elements of the lowest
order for A q:

® piecewise constant elements for Q-

#® piecewise linear continuous elements for ¢ q:
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Finite element appproximation of the saddle-point formulaion

N N

umerical approximation is now standard:

#® Neédélec curl-conforming edge elements of the lowest
order for Hye

#® Nédélec curl-conforming edge elements of the lowest
order for A q:

® piecewise constant elements for Q-

#® piecewise linear continuous elements for ¢ q:

All the stability constants turn out to be independent on the
mesh size h: the quasi-optimality of the algorithm then

follows.

o |
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