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Time-harmonic eddy current problems

Maxwell equations + time-harmonic structure (for a given
frequency ω 6= 0) + low frequency lead to:





curlH − σE = Je in Ω

curlE + iωµH = 0 in Ω

div(ǫE) = 0 in ΩI ,

(1)
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Time-harmonic eddy current problems

Maxwell equations + time-harmonic structure (for a given
frequency ω 6= 0) + low frequency lead to:





curlH − σE = Je in Ω

curlE + iωµH = 0 in Ω

div(ǫE) = 0 in ΩI ,

(1)

where E and H are the electric field and magnetic field, re-

spectively, ǫ is the electric permittivity, µ is the magnetic per-

meability, σ is the conductivity, and Je is the applied density

current. Moreover, the domain Ω is split into two parts, the

conductor ΩC and the insulator ΩI , where σ = 0.
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Boundary conditions

Two possible alternatives:
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Boundary conditions

Two possible alternatives:

infinitely permeable iron
{

H× n = 0 on ∂Ω

ǫE · n = 0 on ∂Ω
(2)
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Boundary conditions

Two possible alternatives:

infinitely permeable iron
{

H× n = 0 on ∂Ω

ǫE · n = 0 on ∂Ω
(2)

perfect conductor

E × n = 0 on ∂Ω .
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Boundary conditions

Two possible alternatives:

infinitely permeable iron
{

H× n = 0 on ∂Ω

ǫE · n = 0 on ∂Ω
(2)

perfect conductor

E × n = 0 on ∂Ω .

[We will consider (2).]
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Topological additional conditions

In general topology (“handles”, “holes”) one has to add
{ ∫

Γj
ǫE · n = 0 ∀ j = 1, . . . , pΓ∫

Σk
ǫE · n = 0 ∀ k = 1, . . . , n∂Ω ,

(3)
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Topological additional conditions

In general topology (“handles”, “holes”) one has to add
{ ∫

Γj
ǫE · n = 0 ∀ j = 1, . . . , pΓ∫

Σk
ǫE · n = 0 ∀ k = 1, . . . , n∂Ω ,

(3)

where:

Γj are the connected components of the interface Γ

between the insulator ΩI and the conductor ΩC

Σk ⊂ ΩI (with ∂Σk ⊂ ∂Ω) are the cutting surfaces of the
non-bounding cycles lying on ∂Ω
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Topological additional conditions

In general topology (“handles”, “holes”) one has to add
{ ∫

Γj
ǫE · n = 0 ∀ j = 1, . . . , pΓ∫

Σk
ǫE · n = 0 ∀ k = 1, . . . , n∂Ω ,

(3)

where:

Γj are the connected components of the interface Γ

between the insulator ΩI and the conductor ΩC

Σk ⊂ ΩI (with ∂Σk ⊂ ∂Ω) are the cutting surfaces of the
non-bounding cycles lying on ∂Ω

[These are orthogonality conditions to the space of harmonic

fields w with ǫw · n = 0 on ∂Ω and w × n = 0 on Γ .]
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General considerations

The unknowns of the problem are H|ΩC , H|ΩI , E|ΩC , E|ΩI ,
but one can consider reduced problems:
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General considerations

The unknowns of the problem are H|ΩC , H|ΩI , E|ΩC , E|ΩI ,
but one can consider reduced problems:

E|ΩC and H|ΩC can be obtained directly one from the
other

E|ΩC = σ−1(curlH|ΩC − Je|ΩC )

H|ΩC = iω−1µ−1 curlE|ΩC
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General considerations

The unknowns of the problem are H|ΩC , H|ΩI , E|ΩC , E|ΩI ,
but one can consider reduced problems:

E|ΩC and H|ΩC can be obtained directly one from the
other

E|ΩC = σ−1(curlH|ΩC − Je|ΩC )

H|ΩC = iω−1µ−1 curlE|ΩC

H|ΩI can be obtained directly from E|ΩI

H|ΩI = iω−1µ−1 curlE|ΩI
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General considerations (cont’d)

E|ΩI can be obtained from H|ΩI and E|ΩC by solving the
electrostatic problem





curlE|ΩI = −iωµH|ΩI in ΩI

div(ǫE|ΩI ) = 0 in ΩI

E|ΩI × n = E|ΩC × n on Γ

ǫE|ΩI · n = 0 on ∂Ω∫
Γj

ǫE|ΩI · n = 0 ∀ j = 1, . . . , pΓ∫
Σk

ǫE|ΩI · n = 0 ∀ k = 1, . . . , n∂Ω

(4)
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General considerations (cont’d)

E|ΩI can be obtained from H|ΩI and E|ΩC by solving the
electrostatic problem





curlE|ΩI = −iωµH|ΩI in ΩI

div(ǫE|ΩI ) = 0 in ΩI

E|ΩI × n = E|ΩC × n on Γ

ǫE|ΩI · n = 0 on ∂Ω∫
Γj

ǫE|ΩI · n = 0 ∀ j = 1, . . . , pΓ∫
Σk

ǫE|ΩI · n = 0 ∀ k = 1, . . . , n∂Ω

(4)

Therefore, there are many possible formulations that can be

proposed!
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Possible approaches

Classical:
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Possible approaches

Classical:

(H|ΩC ,∇ψ|ΩI ) (scalar magnetic potential in ΩI : need of
cutting surfaces for non-bounding cycles on Γ)
(edge elements in ΩC+ piecewise linear elements in ΩI)
Then solve the electrostatic problem for E|ΩI
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Possible approaches

Classical:

(H|ΩC ,∇ψ|ΩI ) (scalar magnetic potential in ΩI : need of
cutting surfaces for non-bounding cycles on Γ)
(edge elements in ΩC+ piecewise linear elements in ΩI)
Then solve the electrostatic problem for E|ΩI

(E|ΩC ,E|ΩI ) (penalty formulation: the divergence-free
constraint is inserted in the energy functional)
(edge elements in ΩC + nodal elements in ΩI )
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Possible approaches

Classical:

(H|ΩC ,∇ψ|ΩI ) (scalar magnetic potential in ΩI : need of
cutting surfaces for non-bounding cycles on Γ)
(edge elements in ΩC+ piecewise linear elements in ΩI)
Then solve the electrostatic problem for E|ΩI

(E|ΩC ,E|ΩI ) (penalty formulation: the divergence-free
constraint is inserted in the energy functional)
(edge elements in ΩC + nodal elements in ΩI )
[similar to the approach via vector magnetic potential in
Ω + scalar electric potential in ΩC : nodal elements in Ω

+ piecewise linear elements in ΩC ]
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Possible approaches (cont’d)

More recent:
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Possible approaches (cont’d)

More recent:

(H|ΩC ,H|ΩI ) (saddle-point formulation: E|ΩI is a
Lagrange multiplier, and the divergence-free constraint
reenters into play) [Alonso Rodríguez, Hiptmair, V., IMA
J. Numer. Anal., 2004]
(edge elements in Ω + piecewise constant elements for
E|ΩI + Crouzeix-Raviart elements for the Lagrange
multiplier in ΩI )
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Possible approaches (cont’d)

More recent:

(H|ΩC ,H|ΩI ) (saddle-point formulation: E|ΩI is a
Lagrange multiplier, and the divergence-free constraint
reenters into play) [Alonso Rodríguez, Hiptmair, V., IMA
J. Numer. Anal., 2004]
(edge elements in Ω + piecewise constant elements for
E|ΩI + Crouzeix-Raviart elements for the Lagrange
multiplier in ΩI )

(E|ΩC ,E|ΩI ) (saddle-point formulation: a Lagrange
multiplier is needed for the divergence-free constraint)
[Alonso Rodríguez, V., ECCOMAS 2004]
(edge elements in Ω + piecewise linear elements for the
Lagrange multiplier in ΩI )
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“Hybrid” approaches

Interesting for finite element approximation, as the grids do
not need to match on the interface Γ.

“Hybrid” finite element approximation of time-harmonic eddy current problems – p.9/17



“Hybrid” approaches

Interesting for finite element approximation, as the grids do
not need to match on the interface Γ.

(E|ΩC ,H|ΩI ) (saddle-point formulation: E|ΩI is a
Lagrange multiplier, and the divergence-free constraint
reenters into play) [very similar to the (H|ΩC ,H|ΩI )

approach]
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Lagrange multiplier, and the divergence-free constraint
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approach]

(H|ΩC ,E|ΩI ) (saddle-point formulation: a Lagrange
multiplier is needed for the divergence-free constraint)
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“Hybrid” approaches

Interesting for finite element approximation, as the grids do
not need to match on the interface Γ.

(E|ΩC ,H|ΩI ) (saddle-point formulation: E|ΩI is a
Lagrange multiplier, and the divergence-free constraint
reenters into play) [very similar to the (H|ΩC ,H|ΩI )

approach]

(H|ΩC ,E|ΩI ) (saddle-point formulation: a Lagrange
multiplier is needed for the divergence-free constraint)

Let us see in more detail this last approach.
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(H|ΩC ,E|ΩI ) saddle-point formulation

[The following results have been published on NMPDEs, 21
(2005), 742–763.]
The problem initially reads:





Find (H|ΩC ,E|ΩI ) ∈ H(curl; ΩC) × ZI such that:

∫

ΩC

(σ−1 curlH · curl v + iωµH · v) +
∫
Γ

v × n · E

=
∫

ΩC

σ−1Je · curl v

∫
Γ

H × n · z + iω−1
∫

ΩI

µ−1 curlE · curl z =
∫

ΩI

Je · z

∀ (v, z) ∈ H(curl; ΩC) × ZI ,

(5)
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(H|ΩC ,E|ΩI ) saddle-point formulation

[The following results have been published on NMPDEs, 21
(2005), 742–763.]
The problem initially reads:





Find (H|ΩC ,E|ΩI ) ∈ H(curl; ΩC) × ZI such that:

∫
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(σ−1 curlH · curl v + iωµH · v) +
∫
Γ

v × n · E

=
∫

ΩC

σ−1Je · curl v

∫
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∫
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∀ (v, z) ∈ H(curl; ΩC) × ZI ,

(5)
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(H|ΩC ,E|ΩI ) saddle-point formulation (cont’d)

where

ZI := {z ∈ H(curl; ΩI) | z satisfies (6)} ,

namely, 



div(ǫz) = 0 in ΩI

ǫz · n = 0 on ∂Ω∫
Γj

ǫz · n = 0 ∀ j = 1, . . . , pΓ∫
Σk

ǫz · n = 0 ∀ k = 1, . . . , n∂Ω .

(6)
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(H|ΩC ,E|ΩI ) saddle-point formulation (cont’d)

where

ZI := {z ∈ H(curl; ΩI) | z satisfies (6)} ,

namely, 



div(ǫz) = 0 in ΩI

ǫz · n = 0 on ∂Ω∫
Γj

ǫz · n = 0 ∀ j = 1, . . . , pΓ∫
Σk

ǫz · n = 0 ∀ k = 1, . . . , n∂Ω .

(6)

[These are usually called gauge conditions.]
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(H|ΩC ,E|ΩI ) saddle-point formulation (cont.)

Problem:
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(H|ΩC ,E|ΩI ) saddle-point formulation (cont.)

Problem:

not easy to find a stable finite element numerical
approximation of (5)
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(H|ΩC ,E|ΩI ) saddle-point formulation (cont.)

Problem:

not easy to find a stable finite element numerical
approximation of (5)

Remedy:
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(H|ΩC ,E|ΩI ) saddle-point formulation (cont.)

Problem:

not easy to find a stable finite element numerical
approximation of (5)

Remedy:

work on smaller constrained spaces
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(H|ΩC ,E|ΩI ) saddle-point formulation (cont.)

Problem:

not easy to find a stable finite element numerical
approximation of (5)

Remedy:

work on smaller constrained spaces

Drawback:
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(H|ΩC ,E|ΩI ) saddle-point formulation (cont.)

Problem:

not easy to find a stable finite element numerical
approximation of (5)

Remedy:

work on smaller constrained spaces

Drawback:

the solution in ΩI is no more the electric field, but a
suitable magnetic vector potential, say, A|ΩI .
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(H|ΩC ,E|ΩI ) saddle-point formulation (cont.)

Problem:

not easy to find a stable finite element numerical
approximation of (5)

Remedy:

work on smaller constrained spaces

Drawback:

the solution in ΩI is no more the electric field, but a
suitable magnetic vector potential, say, A|ΩI .

We end up with the problem:
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(H|ΩC ,A|ΩI ) saddle-point formulation





Find (H|ΩC ,A|ΩI ) ∈ X̃C × Z̃I such that:

∫

ΩC

(σ−1 curlH · curl v + iωµH · v) +
∫
Γ

v × n · A

=
∫

ΩC

σ−1Je · curl v

∫
Γ

H × n · z + iω−1
∫

ΩI

µ−1 curlA · curl z =
∫

ΩI

Je · z

∀ (v, z) ∈ X̃C × Z̃I ,

(7)
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(H|ΩC ,A|ΩI ) saddle-point formulation (cont.)

where

X̃C := {v ∈ H(curl; ΩC) |divΓ(v × n) = 0 on Γ}

Z̃I := {z ∈ H(curl; ΩI) | z satisfies (8)} .

namely, {
div z = 0 in ΩI

z · n = 0 on ∂Ω ∪ Γ .
(8)
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(H|ΩC ,A|ΩI ) saddle-point formulation (cont.)

where

X̃C := {v ∈ H(curl; ΩC) |divΓ(v × n) = 0 on Γ}

Z̃I := {z ∈ H(curl; ΩI) | z satisfies (8)} .

namely, {
div z = 0 in ΩI

z · n = 0 on ∂Ω ∪ Γ .
(8)

[Here, for simplicity we have assumed that ∂Ω has no
handles and that supp Je ∩ Γ = ∅ (so that the solution
satisfies divΓ(H × n) = curlH · n = Je · n = 0 on Γ).]
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(H|ΩC ,A|ΩI ) saddle-point formulation (cont.)

where

X̃C := {v ∈ H(curl; ΩC) |divΓ(v × n) = 0 on Γ}

Z̃I := {z ∈ H(curl; ΩI) | z satisfies (8)} .

namely, {
div z = 0 in ΩI

z · n = 0 on ∂Ω ∪ Γ .
(8)

[Here, for simplicity we have assumed that ∂Ω has no
handles and that supp Je ∩ Γ = ∅ (so that the solution
satisfies divΓ(H × n) = curlH · n = Je · n = 0 on Γ).]

It is still a constrained problem!
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(H|ΩC ,A|ΩI ) saddle-point formulation (cont.)

The final unconstrained problem is the following:
Find (H|ΩC ,A|ΩI , Q|Γ, φ|ΩI ) ∈ X such that





∫

ΩC

(σ−1 curlH · curl v + iωµH · v) +
∫
Γ

v × n · A

−
∫
Γ

divΓ(v × n)Q =
∫

ΩC

σ−1Je · curl v

∫
Γ

H × n · z + iω−1
∫

ΩI

µ−1 curlA · curl z

−
∫

ΩI

z · gradφ =
∫

ΩI

Je · z

∫
Γ

divΓ(H × n)P = 0

∫

ΩI

A · grad η = 0

(9)

for all (v, z, P, η) ∈ X ,
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(H|ΩC ,A|ΩI ) saddle-point formulation (cont.)

where

X := X∗
C × H(curl; ΩI) × L2(Γ) ×H1(ΩI)

X∗
C := {vC ∈ H(curl; ΩC) |divΓ(vC × n)∈ L2(Γ)} .
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(H|ΩC ,A|ΩI ) saddle-point formulation (cont.)

where

X := X∗
C × H(curl; ΩI) × L2(Γ) ×H1(ΩI)

X∗
C := {vC ∈ H(curl; ΩC) |divΓ(vC × n)∈ L2(Γ)} .

This problem is well-posed: existence, uniqueness, stability.
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(H|ΩC ,A|ΩI ) saddle-point formulation (cont.)

where

X := X∗
C × H(curl; ΩI) × L2(Γ) ×H1(ΩI)

X∗
C := {vC ∈ H(curl; ΩC) |divΓ(vC × n)∈ L2(Γ)} .

This problem is well-posed: existence, uniqueness, stability.

However, as we already remarked, the solution A|ΩI is
no more the electric field in ΩI (the “physical” electric
field does not satisfy (8)!). Indeed, it is a suitable
magnetic vector potential: one can define the magnetic
field in ΩI by setting curlA|ΩI = −iωµH|ΩI , and then
finding the electric field in ΩI by solving the electrostatic
problem (4).
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Finite element appproximation of the saddle-point formulation

Numerical approximation is now standard:
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Finite element appproximation of the saddle-point formulation

Numerical approximation is now standard:

Nédélec curl-conforming edge elements of the lowest
order for H|ΩC
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Finite element appproximation of the saddle-point formulation

Numerical approximation is now standard:

Nédélec curl-conforming edge elements of the lowest
order for H|ΩC

Nédélec curl-conforming edge elements of the lowest
order for A|ΩI

“Hybrid” finite element approximation of time-harmonic eddy current problems – p.17/17



Finite element appproximation of the saddle-point formulation

Numerical approximation is now standard:

Nédélec curl-conforming edge elements of the lowest
order for H|ΩC

Nédélec curl-conforming edge elements of the lowest
order for A|ΩI

piecewise constant elements for Q|Γ
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Finite element appproximation of the saddle-point formulation

Numerical approximation is now standard:

Nédélec curl-conforming edge elements of the lowest
order for H|ΩC

Nédélec curl-conforming edge elements of the lowest
order for A|ΩI

piecewise constant elements for Q|Γ

piecewise linear continuous elements for φ|ΩI
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Finite element appproximation of the saddle-point formulation

Numerical approximation is now standard:

Nédélec curl-conforming edge elements of the lowest
order for H|ΩC

Nédélec curl-conforming edge elements of the lowest
order for A|ΩI

piecewise constant elements for Q|Γ

piecewise linear continuous elements for φ|ΩI

All the stability constants turn out to be independent on the
mesh size h: the quasi-optimality of the algorithm then
follows.
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