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Motivation

Aim of this talk is two-fold:

construct a finite element approximation of the space of
harmonic fields

Hµ(Ω)={v ∈ (L2(Ω))3 |curl v = 0, div(µv) = 0, µv·n = 0 on ∂Ω}

furnish a finite element numerical solution to the
magnetostatic problem

curlH = J in Ω
div(µH) = 0 in Ω
µH · n = 0 on ∂Ω .

[Here: Ω ⊂ R3 a bounded domain with a Lipschitz boundary ∂Ω
and unit outward normal vector n; µ a symmetric matrix, uniformly
positive definite in Ω and with entries in L∞(Ω).]
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Motivation (cont’d)

In particular:

we give an efficient computational way for constructing the
so-called loop fields, i.e., the irrotational vector fields T0 that
cannot be expressed in Ω as the gradient of any single-valued
scalar potential (there exists a loop in Ω such that the line
integral of T0 on it is different from 0)

we give an efficient computational way for constructing a
so-called source field, i.e., a vector field He satisfying
curlHe = J in Ω.
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Motivation (cont’d)

A suitable set of loop fields furnishes a basis of the first de
Rham cohomology group of Ω (the quotient space between
curl-free vector fields and gradients defined in Ω).

[Here we need a definition: if the only linear combination of a set
of loop fields that equals a gradient is the trivial one, we say that
those loop fields are cohomologically independent. Then, “suitable
set of loop fields” means “a maximal set of cohomologically
independent loop fields”.]

Source fields are often needed for formulating electromagnetic
problems (for instance, eddy current problems in terms of a
magnetic scalar potential in the insulating region).
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More on the space of harmonic fields Hµ(Ω)

Let us start from the approximation of Hµ(Ω). The dimension of
this vector space is g , the first Betti number of Ω.

[The first Betti number is the rank of the first homology group of
Ω, i.e., the number of the elements of a maximal set of
homologically independent non-bounding cycles in Ω; it is also the
dimension of the first de Rham cohomology group of Ω.]

[Another definition: if the only linear combination of a set of cycles
that coincides with the boundary of a surface is the trivial one, we
say that those cycles are homologically independent.]
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Loop fields and harmonic fields

A theoretical way for determining a basis of Hµ(Ω) is grounded on
the fact that there exist g surfaces Σn, each one “cutting” a
non-bounding cycle in Ω, and it reads as follows.
Denoting by [·]Σn

the jump across Σn, take a function ϕ∗n that
satisfies [ϕ∗n]Σn

= 1 and define T∗0,n the extension to Ω of gradϕ∗n,
computed in Ω \ Σn.

It is clear that T∗0,n is curl-free and has line integral equal to 1 on
the non-bounding cycle cut by the surface Σn; therefore, it is a loop
field [but it is not divergence free, nor tangential to the boundary].

A basis of Hµ(Ω) is given by a correction of these fields, i.e, by
ρn = T∗0,n + gradψn, where ψn solves the Neumann problem

div(µgradψn) = −div(µT∗0,n) in Ω

µgradψn · n = −µT∗0,n · n on ∂Ω .
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“Cutting” surfaces

There is an extensive literature concerning their construction (see
Kotiuga [1987,1988,1989], Harrold and Simkin [1985], Leonard et
al. [1993], Ren [2002], Simkin et al. [2004], Dular [2005]).
However, in general topological situations (for instance, in the case
of domains that are the complement of “knotted” domains) and
for real-sized finite element meshes this construction is not
feasible, as it can be quite expensive from the computational point
of view (see Bossavit [1998], D lotko et al. [2009]).

To give an idea of the shape of a “cutting” surface, we recall that,
when Ω is the complement in a box of a knot, it is the Seifert
surface of the knot. [Instead, in the case of a link of two or more
knots, the Seifert surface is not enough to finish the construction,
as the “cutting” surfaces must be as many as the knots.]
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Seifert surfaces

[Images produced with SeifertView, Jarke J. van Wijk, Technische
Universiteit Eindhoven.]

Figure: Torus, trefoil knot, knot 41.
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Seifert surfaces (cont’d)

Figure: Hopf link, Whitehead link, Borromean rings.
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An alternative procedure for constructing the loop fields

We have seen that “cutting” surfaces are not always available.
Therefore, it is interesting to propose an alternative procedure for
the determination of a basis of discrete loop fields.
Tools:

homology theory
generators of the first homology group of ∂Ω, Ω and R3 \ Ω
no “cutting” surfaces

graph theory applied to the mesh
a spanning tree of the graph given by the edges of the mesh
no need of a “belted tree” (see Ren and Razek [1993],
Bossavit [1998])

direct elimination procedure
a direct algorithm of Webb and Forghani [1989]
an explicit formula for the discrete loop fields in terms of
linking numbers.
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Variational formulation

Focusing on magnetostatics, the complete well-posed problem
reads:

curlH = J in Ω
div(µH) = 0 in Ω
µH · n = 0 on ∂Ω∫

Ω µH · η = 0 ∀η ∈ Hµ(Ω) .

A quite simple variational formulation is: given J ∈ (L2(Ω))3

satisfying the necessary conditions, find H ∈ (L2(Ω))3 such that

curlH = J in Ω∫
Ω µH · z = 0 ∀ z ∈ H0(curl ; Ω) ,

(1)

where H0(curl ; Ω) = {z ∈ (L2(Ω))3 | curl z = 0}, and we have
taken into account the µ-orthogonal decomposition

H0(curl ; Ω) = grad H1(Ω)⊕Hµ(Ω) .
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Problem unknowns and pre-calculation

Unkowns are the magnetic scalar “potential” (defined up to a
constant) and the coefficients of the projections on Hµ(Ω): the
“cheapest” formulation, as:

the (unsplit) magnetic field is not the principal unknown

the magnetic vector potential is not introduced

we have one unknown per node, plus g scalar parameters
(coming from topology).

On the other hand, to reformulate the problem in the vector space
H0(curl ; Ω) we need to know a source field He such that
curlHe = J.
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Discrete source fields

Therefore, the determination of the discrete source fields will be a
necessary tool for numerical approximation. This problem has been
widely considered, mainly for simple topological domains (see, e.g.,
Webb and Forghani [1989], Preis et al. [1992], Dular et al. [1997],
Le Ménach et al. [1998], Rapetti et al. [2003], Dular [2005],
Badics and Cendes [2007], D lotko and Specogna [2010]).
Our recipe:

proceed as for the loop fields [generators of the homology
group on ∂Ω, spanning tree of the mesh in Ω, Webb–Forghani
algorithm]

when the algorithm stops, introduce a dual graph for the
remaining edges

use a direct solver for the final (small and sparse) system.
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Finite element spaces

Being given with a triangulation Th of Ω composed by tetrahedra,
we consider the following spaces of finite elements:

The space Lh ⊂ H1(Ω) of continuous piecewise linear finite
elements. Its dimension is nv , the number of vertices in Th.

The space Nh ⊂ H(curl ; Ω) of Nédélec edge finite elements of
degree 1 [locally: a + b× x]. Its dimension is ne , the number
of edges in Th.

The space RTh ⊂ H(div; Ω) of Raviart–Thomas finite
elements of degree 1 [locally: a + b x]. Its dimension is nf , the
number of faces in Th.

We have grad Lh ⊂ Nh and curl Nh ⊂ RTh.
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Finite element magnetostatic problem

The finite element approximation of (1) reads as follows. Given
Jh ∈ RTh, a suitable finite element approximation of J satisfying
the necessary conditions, find Hh ∈ Nh such that

curlHh = Jh in Ω∫
Ω µHh · zh = 0 ∀ zh ∈ Nh ∩ H0(curl ; Ω) .

(2)

If a source field He,h ∈ Nh with curlHe,h = Jh is known, we can
write:

find Kh ∈ Nh ∩ H0(curl ; Ω) :∫
Ω µKh · zh = −

∫
Ω µHe,h · zh

∀ zh ∈ Nh ∩ H0(curl ; Ω) ,
(3)

and define Hh = Kh + He,h.
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Finite element magnetostatic problem (cont’d)

We have thus seen that a finite element approximation of (1) is
standard provided that:

we know a discrete source field He,h satisfying curlHe,h = Jh

we are able to characterize in a simple way the space
Nh ∩ H0(curl ; Ω).

With respect to the latter point, we mimic the µ-orthogonal
decomposition H0(curl ; Ω) = grad H1(Ω)⊕Hµ(Ω) and write the
elements zh ∈ Nh ∩ H0(curl ; Ω) as [the proof will follow soon...]

zh = gradφh +

g∑
n=1

ξnT0,n ,

where T0,n are suitable finite element loop fields. [Not harmonic
fields! Thus note that this decomposition is not µ-orthogonal.]
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Finite element magnetostatic problem (cont’d)

Therefore, problem (3) can be rewritten as:

find βi ∈ R, i = 1, . . . , nv − 1, and ηj ∈ R, j = 1, . . . , g :

nv−1∑
i=1

βi

∫
Ω
µgrad Φh,i · grad Φh,l +

g∑
j=1

ηj

∫
Ω
µT0,j · grad Φh,l

= −
∫

Ω µHe,h · grad Φh,l ∀ l = 1, . . . , nv − 1

nv−1∑
i=1

βi

∫
Ω
µgrad Φh,i · T0,n +

g∑
j=1

ηj

∫
Ω
µT0,j · T0,n

= −
∫

Ω µHe,h · T0,n ∀ n = 1, . . . , g .

(Here {Φh,1, . . . ,Φh,nv } is a basis of Lh, and nv is the number of
the vertices of the mesh Th.)
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Finite element magnetostatic problem (cont’d)

The solution of problem (2) is then determined by setting

Hh =
nv−1∑
i=1

βigrad Φh,i +

g∑
j=1

ηjT0,j + He,h . (4)

Summing up:

a scalar unknown ψh =
∑nv−1

i=1 βiΦh,i

g “topological” unknowns ηj .
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Error estimate

Let us denote by ΠRTh and ΠNh the interpolation operators defined
for smooth functions and valued in RTh and Nh, respectively. A
straightforward use of Lax–Milgram lemma gives:

Theorem

Assume that J and the solution H of problem (1) are smooth.
Then the solution Hh of problem (2) with Jh = ΠRThJ satisfies the
following error estimate:

‖H−Hh‖0 + ‖curlH− curlHh‖0

≤ C‖H− ΠNhH‖0 + ‖J− ΠRThJ‖0 .
(5)
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The fundamental discrete problem

Let us consider:

a basis σn of the first homology group of Ω

a basis σ̂n of the first homology group of R3 \ Ω

a spanning tree Sh of the graph given by the edges of Th.

We focus now on our main problem: given Jh ∈ RTh satisfying the
necessary conditions, find Zh ∈ Nh such that

curl Zh = Jh in Ω∮
σn

Zh · ds = κn ∀ n = 1, . . . , g∫
e′ Zh · τ = 0 ∀ e ′ ∈ Sh ,

(6)

where κ1, . . . , κg are real numbers.
[Note that the number of edges e ′ in Sh is nv − 1; therefore (6)3

can be seen as a “filtre” for gradients.]
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Existence and uniqueness

Theorem

Problem (6) has a solution and this solution is unique.
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Existence and uniqueness (cont’d)

Proof.

Uniqueness: the difference of two solutions satisfies Zh − Z̃h ∈ Nh,
curl (Zh − Z̃h) = 0 and

∮
σn

(Zh − Z̃h) · ds = 0 for all n = 1, . . . , g ,

hence from the de Rham theorem Zh − Z̃h = gradψh with
ψh ∈ Lh. For each e ′ ∈ Sh we have
0 =

∫
e′ gradψh · ds = ψh(vb)− ψh(va), thus ψh is constant

because Sh is a spanning tree.
Existence: we can see that Zh = Wh + ΠNhH∗, where H∗ is a
source field of Jh and Wh ∈ Nh ∩ H0(curl ; Ω) is the solution of∮

σn
Wh · ds = κn −

∮
σn

ΠNhH∗ · ds ∀ n = 1, . . . , g∫
e′ Wh · τ = −

∫
e′ ΠNhH∗ · τ ∀ e ′ ∈ Sh .

�
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Back to source fields, loop fields and finite element basis

Clearly,

a discrete source field He,h can be computed by solving (6),
for any choice of κn.

But also (see the following lemma):

a set of cohomologically independent finite element loop fields
T0,j can be determined by solving (6) with Jh = 0 and
κn = mn,j , for any choice of a non-singular matrix M = (mn,j)

a basis of Nh ∩ H0(curl ; Ω) can be computed starting from
{Φh,1, . . . ,Φh,nv }, a basis of Lh, and using these loop fields.
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Characterization of the discrete space

Lemma

Let T0,j , j = 1, . . . , g, be the solutions to problem (6) with Jh = 0
and κn = mn,j , where the matrix M = (mn,j) is non-singular, and
let Φh,i , i = 1, . . . , nv , be a basis of Lh. Then the fields T0,j are
cohomogically independent loop fields and the set

{grad Φh,1, . . . , grad Φh,nv−1} ∪ {T0,1, . . . ,T0,g}

is a basis of Nh ∩ H0(curl ; Ω).
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Characterization of the discrete space (cont’d)

Proof.

The dimension of Nh ∩H0(curl ; Ω) is equal to g + nv − 1, hence is
enough to prove linear independence. If we have∑nv−1

i=1 pigrad Φh,i +
∑g

j=1 qjT0,j = 0, it follows

0 =
nv−1∑
i=1

pi

∮
σn

grad Φh,i · ds +

g∑
j=1

qj

∮
σn

T0,j · ds =

g∑
j=1

qjmn,j

for all n = 1, . . . , g , hence qj = 0 for each j = 1, . . . , g . We thus
have

∑nv−1
i=1 pigrad Φh,i = 0, hence

∑nv−1
i=1 piΦh,i = const; the

conclusion follows from the fact that Φh,i (vnv ) = 0 for each
i = 1, . . . , nv − 1.
The proof that the loop fields T0,j are cohomologically
independent follows the same argument. �
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An algorithm for solving (6)

Since we are looking for a Nédélec edge element, the number of
unknowns in (6) is given by the number ne of the edges of the
mesh Th.

Since we are imposing the matching between two Raviart–Thomas
elements, the number of equations of curl Zh = Jh is given by the
number nf of the faces of the mesh Th (and its null-space has
dimension g + nv − 1).

Therefore, (6) is rectangular system with more equations
(nf + g + nv − 1) than unknowns (ne). However, it has a full rank
and has a unique solution.

Can we find an efficient solver?
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A variation on the theme

What about solving

gradϕ = q in Ω ?

We can take an edge element approximation qh of q, and look for
a nodal element ϕh ∈ Lh such that gradϕh = qh in Ω. This means
that we have to match two Nédélec edge elements, hence the line
integrals of gradϕh and qh on each edge of the mesh have to be
the same.
Starting from the root v∗ of a spanning tree Sh, where we impose
ϕh(v∗) = 0, we have only to compute

ϕh(v∗) = ϕh(v∗) +
∫
e′ qh · τ

for an edge e ′ = [v∗, v
∗] ∈ Sh, and, since Sh is a spanning tree,

going on in this way we can visit all the vertices of Th.
A. Valli Finite element computational cohomology and magnetostatics
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A variation on the theme (cont’d)

In other words, the matrix associated to the linear system to solve
has exactly two non-zero values for each row. The spanning tree is
a tool for selecting the rows for which, using the additional
equation ϕh(v∗) = 0, one can eliminate the other unknowns one
after the other.

Can we do something similar for problem (6)?
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An algorithm for solving (6) (cont’d)

For problem curl Zh = Jh we have to match two Raviart–Thomas
elements, hence their fluxes across each face of Th have to be the
same.
Since the Stokes theorem assures that∫

e1

Zh · τ +

∫
e2

Zh · τ +

∫
e2

Zh · τ =

∫
f
Jh · ν , (7)

where ∂f = e1 ∪ e2 ∪ e3 and ν is the unit normal vector on f (with
consistent orientation), we deduce that the corresponding linear
system has exactly three non-zero values for each row.

With respect to the preceding case:

need to work on the edges instead of on the vertices

three unknowns per row instead of two.
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Webb–Forghani algorithm

Webb and Forghani [1989] proposed the following solution
algorithm:

1 set value 0 to the unknowns corresponding to an edge
belonging to the spanning tree

2 take a face f for which at least one edge unknown has not yet
been assigned

1 if exactly one edge unknown is not determined, compute its
value from the Stokes relation (7)

2 if two or three edge unknowns are not determined, pass to
another face

3 if the iterations stop, use
∮
σn

Zh · ds = κn to restart.
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Webb–Forghani algorithm (cont’d)

The Webb–Forghani algorithm is a simple elimination procedure
for solving the linear system at hand, and it is quite efficient, as
the computational costs is linearly dependent on the number of
unknowns.

The weak point is that:

it strongly depends on the choice of the spanning tree and it
can stop without having determined all the edge unknowns
(even in simple topological situations!)

(see D lotko and Specogna [2010]).
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Webb–Forghani algorithm in action

ne n
(2)
e breadth-first n

(2)
e depth-first

Test A 42200 0 27912

Test B 35380 0 23595

Test C 25768 0 15707

Test D 15349 2092 9554

Test E 34372 6002 22776

Test F 80504 12916 53488

Table: Dependence of the reduction of the unknowns on the choice of
the spanning tree.

[A: 2-torus; B: Borromean rings; C: two-5-tori link; D: trefoil knot;
E: knot 41; F: two-41-knots link.]
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A modified algorithm

The procedure we propose is strictly related to the Webb–Forghani
algorithm. Let us describe it.
When the algorithm stops, we are left with some faces where only
one degree of freedom has been determined (say, 1-faces), and
some faces where no degree of freedom has been determined (say,
0-faces). Since each 1-face naturally “connects” two non-assigned
edges

construct a dual graph whose nodes are the non-assigned
edges and the arcs are the 1-faces.

In general, this graph is not connected.

on each connected component choose a spanning tree and a
root of the spanning tree.
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A modified algorithm (cont’d)

Each edge unknown in a fixed connected component can be
expressed in an affine way with respect to the value of the
corresponding root. In particular, the equations associated to the
0-faces are affine equations in terms of no more than three roots,
and also the homological equations (those not yet eliminated...)
can be expressed in terms of the unknowns corresponding to the
roots.

We have thus reduced the problem to the solution of a small and
sparse linear system with as many unknowns as the number of
connected components of the dual graph (and as many equations
as the number of 0-faces plus g∗, 0 ≤ g∗ ≤ g).

This problem has a unique solution, hence it can be solved by
using an algebraic direct method.
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The modified algorithm in action

nf × ne n
(1)
f × n

(1)
e

Test D 1518464× 902388 134087× 54273

Test E 3509696× 2073688 372839× 150694

Test F 8337664× 4913792 686896× 275832

Table: Dimension of the linear system: after steps 1 and 2.

n
(2)
f × n

(2)
e #0F ×#CC

Test D 86186× 34506 1175× 30

Test E 246924× 98603 3372× 107

Test F 531280× 212088 7416× 145

Table: Dimension of the linear system: after steps 3 and 4.
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An explicit formula for the loop fields

If Jh = 0 we devise an explicit formula for the solution to (6).

The idea is the following: the Biot–Savart law gives the magnetic
field generated by a unitary density current concentrated along the
edge cycle σ̂j (a generator of the first homology group of R3 \ Ω)
by means of the formula:

Ĥ(x) =
1

4π

∮
bσj

y − x

|y − x|3
× dsy , x 6∈ σ̂j .

Since the cycle σ̂j can be chosen external to Ω, one has curl Ĥ = 0
in Ω. Moreover, on each cycle γ ⊂ Ω that is linking the current
passing in σ̂j one finds

∮
γ Ĥ · ds 6= 0, hence Ĥ is a loop field.

[There are cycles γ with the required property: for instance, one of
the generators of the first homology group of Ω.]
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An explicit formula for the loop fields (cont’d)

Clearly, the Nédélec interpolant ΠNhĤ is a finite element loop field.
For each e ∈ Th, its degrees of freedom are given by

q̂e =
1

4π

∫
e

(∮
bσj

y − x

|y − x|3
× dsy

)
· τ x .

This resembles the formula for computing the linking number
between σ̂j and another disjoint cycle σ:

LK(σ, σ̂j) =
1

4π

∮
σ

(∮
bσj

y − x

|y − x|3
× dsy

)
· dsx .

The linking number is an integer that represents the number
of times that each cycle winds around the other.
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An explicit formula for the loop fields (cont’d)

Is it possible to reduce the definition of the finite element loop
field to the computation of suitable linking numbers?

Consider the spanning tree Sh, its root v∗, and define in the
vertices of Th the scalar function φh ∈ Lh as φh(v∗) = 0 and

φh(vb) = φh(va) + q̂[va,vb] ∀e ′ = [va, vb] ∈ Sh .

The Nédélec finite element Zh = ΠNhĤ− gradφh is a loop field,
and its degrees of freedom are equal to 0 for all the edges e ′ of the
spanning tree Sh.

For each e ∈ Th, define now by De the edge cycle constituted by:
the edges from the root of the spanning tree Sh to the first vertex
v−e of e, the edge e, the edges from the second vertex v +

e of e to
the root of the spanning tree Sh. In particular, De′ is a trivial cycle
if e ′ ∈ Sh.
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An explicit formula for the loop fields (cont’d)

When e 6∈ Sh the cycle De is constituted by edges all belonging to
the spanning tree (except e): hence we have

1
4π

∮
De

(∮bσj

y−x
|y−x|3 × dsy

)
· dsx

= q̂e +
∑

e′∈De∩Sh
q̂e′

= q̂e +
∑

e′∈De∩Sh

(
φh(v +

e′ )− φh(v−e′ )
)

= q̂e + (φh(v−e )− φh(v +
e )) =

∫
e Zh · τ ,

and thus the degrees of freedom of Zh are given by∫
e Zh · τ = LK (De , σ̂j) .

In particular, the loop field Zh thus defined satisfies problem (6)
with κn = mn,j = LK (σn, σ̂j), a non-singular matrix.

Selecting j = 1, . . . , g we have an explicit formula for a basis
of the first de Rham cohomology group.
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Webb–Forghani algorithm and linking numbers

Since a linking number is a sum of simple double integrals, its
computation can be done efficiently (see Bertolazzi and Ghiloni
[2012]).
However, for a fine mesh it is too expensive if used for all the
edges (not belonging to the spanning tree...).

Recipe: when the Webb–Forghani algorithm stops, use the
formula for computing the value of one single unknown, and
restart the algorithm.

Numerical experiments show that the use of the explicit formula is
necessary very few times [one for Test D and Test E, four for Test
F].
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Geometries

Figure: Case A: 2-torus (one homological cycle σn is drawn).
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Geometries (cont’d)

Figure: Case B: Borromean rings (one homological cycle σn is drawn).
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Geometries (cont’d)

Figure: Case C: two-5-tori link (one homological cycle σn is drawn).
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Geometries (cont’d)

Figure: Case D: trefoil knot (one homological cycle σn is drawn).
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Geometries (cont’d)

Figure: Case E: knot 41 (one homological cycle σn is drawn).
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Geometries (cont’d)

Figure: Case F: two-41-knots link (one homological cycle σn is drawn).

A. Valli Finite element computational cohomology and magnetostatics



Introduction
Finite element approximation

The fundamental discrete problem
Numerical results

Numerical results

Mesh 1 Mesh 2 Mesh 3
ne ms ne ms ne ms

Test A 42200 138 325904 868 2560416 6770

Test B 35380 93 273348 586 2147096 4397

Test C 25768 293 195256 1318 1517328 7434

Test D 15349 79 116170 294 902388 2016

Test E 34372 144 264548 749 2073688 4760

Test F 80504 310 624352 2671 4913792 12723

Table: CPU time for computing all the homological cycles σn and σ̂n.
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Numerical results (cont’d)

ne ne −#L n
(1)
e n

(2)
e #CC

Test A 2560416 2185729 58987 0 -

Test B 2147096 1832896 110245 0 -

Test C 1517328 1292168 124239 0 -

Test D 902388 768384 54273 34506 30

Test E 2073688 1769408 150694 98603 107

Test F 4913792 4196608 275832 212088 145

Table: Reduction of the number of unknowns.

[ne : number of edges; #L: number of spanning tree edges;

n
(1)
e : number of unknowns left after the algorithm has stopped;

n
(2)
e : number of unknowns left after having used the homological

equations; #CC : number of connected components of dual graph.]
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Numerical results (cont’d)

ne loop fields source field

Test A 2560416 (2) 9659 9937

Test B 2147096 (3) 9447 8822

Test C 1517328 (10) 28187 6322

Test D 902388 (1) 3759 3814

Test E 2073688 (1) 8705 8907

Test F 4913792 (2) 37338 22210

Table: CPU time (ms) for computing all the loop fields (their number is
indicated in parenthesis) and one source field.
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Computed loop fields

Figure: Support of a loop field. Case A: 2-torus.
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Computed loop fields (cont’d)

Figure: Support of a loop field. Case B: Borromean rings.
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Computed loop fields (cont’d)

Figure: Support of a loop field. Case C: two-5-tori link.
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Computed loop fields (cont’d)

Figure: Support of a loop field. Case D: trefoil knot.
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Computed loop fields (cont’d)

Figure: Support of a loop field. Case E: knot 41.
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Computed loop fields (cont’d)

Figure: Support of a loop field. Case F: two-41-knots link.
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