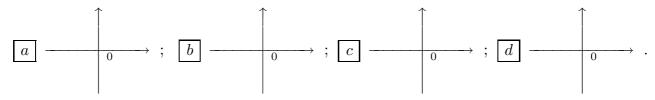
CALCOLO 1		13 gennaio 2006
Cognome:	Nome:	Matricola:

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. L'insieme dei valori del parametro x > 0 per cui la serie $\sum_{n=0}^{\infty} \frac{n^2 x^n}{2^n + 3^n}$ è convergente è: $\boxed{a} \quad 0 < x \leq \frac{2}{3}; \quad \boxed{b} \quad 0 < x < \frac{3}{2}; \quad \boxed{c} \quad 0 < x < 3; \quad \boxed{d} \quad 0 < x \leq \frac{1}{3}.$
- 2. Se y(x) è la soluzione del problema di Cauchy

$$\begin{cases} y' = 2e^y - e^x \\ y(0) = 0 \end{cases}$$

allora il suo polinomio di Taylor di secondo grado (e di centro $x_0 = 0$) è: $a x + \frac{3}{2}x^2$; $b x + x^2$; $c x + \frac{1}{2}x^2$; $d x - \frac{1}{2}x^2$.

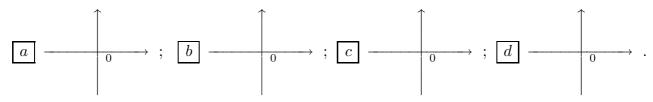
- 3. Sia f(x) una funzione continua in [a,b], strettamente crescente. Quale delle seguenti affermazioni è sempre vera? a esiste $\widehat{x} \in (a,b)$ tale che $(b-a) \int_a^b f(x) dx = f(\widehat{x}); b$ esiste $\widehat{x} \in (a,b)$ tale che $\int_a^b f(x) dx = f(\widehat{x}); c$ $\int_a^b f(x) dx > f(b)(b-a); d$ $\int_a^b f(x) dx > f(a)(b-a).$
- 4. L'insieme dei valori del parametro $\alpha \in \mathbf{R}$ per cui l'integrale generalizzato $\int_0^1 \frac{e^{x^2} 1}{x^\alpha \sin x} dx$ è convergente è: $\boxed{a} \quad \alpha < -1; \quad \boxed{b} \quad \alpha < 2; \quad \boxed{c} \quad \alpha < 1; \quad \boxed{d} \quad \alpha < 0.$
- 5. $\lim_{x \to 0} \frac{x \operatorname{tg} x}{\log(1+x) x} = \boxed{a} 6; \boxed{b} 1/6; \boxed{c} 12; \boxed{d} 2.$
- 6. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione derivabile due volte, con derivata seconda continua. Si abbia f(0) = 1, f'(0) = 1 e f''(0) = 0, e sia $g(x) = \frac{f(x)-1}{f(x)+2}$. Allora il grafico di g(x) vicino all'origine è:



- 7. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua. Allora $\int_0^1 x^2 f(2x) dx = \boxed{a} \frac{1}{8} \int_0^2 t f(t) dt$; $\boxed{b} \frac{1}{2} \int_0^1 t f(t) dt$; $\boxed{c} \frac{1}{8} \int_0^2 t^2 f(t) dt$; $\boxed{d} \frac{1}{2} \int_0^1 t^2 f(t) dt$.
- 8. Sia $a_n > 0$ per ogni $n \ge 0$. Se $\sum_{n=0}^{+\infty} a_n$ è convergente, quale delle seguenti affermazioni è sempre vera? $\boxed{a} \sum_{n=0}^{+\infty} \frac{1}{1+a_n}$ è convergente; $\boxed{b} \sum_{n=0}^{+\infty} (1+a_n)$ è convergente; $\boxed{c} \sum_{n=0}^{+\infty} \frac{a_n}{1+a_n}$ è convergente; $\boxed{d} \sum_{n=0}^{+\infty} \frac{1+a_n}{a_n}$ è convergente.

CALCOLO 1		13 gennaio 2006
Cognome:	Nome:	Matricola:

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione derivabile due volte, con derivata seconda continua. Si abbia f(0) = -1, f'(0) = -1 e f''(0) = 0, e sia $g(x) = \frac{f(x)+1}{f(x)-2}$. Allora il grafico di g(x) vicino all'origine è:



- 2. Sia f(x) una funzione continua in [a,b], strettamente decrescente. Quale delle seguenti affermazioni è sempre vera? \boxed{a} esiste $\widehat{x} \in (a,b)$ tale che $\int_a^b f(x) dx = f(\widehat{x});$ \boxed{b} $\int_a^b f(x) dx > f(b)(b-a);$ \boxed{c} $\int_a^b f(x) dx > f(a)(b-a);$ \boxed{d} esiste $\widehat{x} \in (a,b)$ tale che (b-a) $\int_a^b f(x) dx = f(\widehat{x}).$
- 3. L'insieme dei valori del parametro $\alpha \in \mathbf{R}$ per cui l'integrale generalizzato $\int_0^1 \frac{e^x 1}{x^\alpha \sin(x^3)} dx$ è convergente è: $\boxed{a} \quad \alpha < 2; \quad \boxed{b} \quad \alpha < 1; \quad \boxed{c} \quad \alpha < 0; \quad \boxed{d} \quad \alpha < -1.$
- 4. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua. Allora $\int_0^1 x^5 f(x^2) dx = a \frac{1}{2} \int_0^1 t f(t) dt$; $b \frac{1}{8} \int_0^2 t^2 f(t) dt$; $c \frac{1}{2} \int_0^1 t^2 f(t) dt$; $d \frac{1}{8} \int_0^2 t f(t) dt$.
- 5. L'insieme dei valori del parametro x > 0 per cui la serie $\sum_{n=1}^{\infty} \frac{(2^n + 3^n)x^n}{n(n+1)}$ è convergente è: $a \mid 0 < x < \frac{3}{2}$; $b \mid 0 < x < 3$; $c \mid 0 < x \le \frac{1}{3}$; $d \mid 0 < x \le \frac{2}{3}$.
- 6. Se y(x) è la soluzione del problema di Cauchy

$$\begin{cases} y' = -e^{3y} + 2e^x \\ y(0) = 0 \end{cases}$$

allora il suo polinomio di Taylor di secondo grado (e di centro $x_0 = 0$) è: $a x + x^2$; $b x + \frac{1}{2}x^2$; $c x - \frac{1}{2}x^2$; $d x + \frac{3}{2}x^2$.

- 7. Sia $a_n > 0$ per ogni $n \ge 0$. Se $\sum_{n=0}^{+\infty} \frac{1}{a_n}$ è convergente, quale delle seguenti affermazioni è sempre vera? $\boxed{a} \sum_{n=0}^{+\infty} (1+a_n)$ è convergente; $\boxed{b} \sum_{n=0}^{+\infty} \frac{a_n}{1+a_n}$ è convergente; $\boxed{c} \sum_{n=0}^{+\infty} \frac{1+a_n}{a_n}$ è convergente; $\boxed{d} \sum_{n=0}^{+\infty} \frac{1}{1+a_n}$ è convergente.
- 8. $\lim_{x \to 0} \frac{x^2 \operatorname{tg}(2x)}{\sin x x} = \boxed{a} 1/6; \boxed{b} 12; \boxed{c} 2; \boxed{d} 6.$

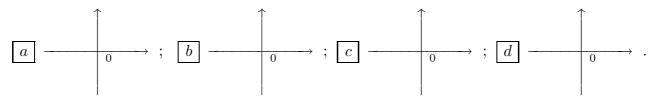
CALCOLO 1		13 gennaio 2006
Cognome:	Nome:	Matricola:

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Se y(x) è la soluzione del problema di Cauchy

$$\begin{cases} y' = -e^y + 2e^{2x} \\ y(0) = 0 \end{cases}$$

allora il suo polinomio di Taylor di secondo grado (e di centro $x_0 = 0$) è: $a x + \frac{1}{2}x^2$; $b x - \frac{1}{2}x^2$; $c x + \frac{3}{2}x^2$; $d x + x^2$.

- 2. L'insieme dei valori del parametro $\alpha \in \mathbf{R}$ per cui l'integrale generalizzato $\int_0^1 \frac{\sin x}{x^\alpha \log(1+x^2)} dx$ è convergente è: $a \mid \alpha < 1$; $b \mid \alpha < 0$; $c \mid \alpha < -1$; $d \mid \alpha < 2$.
- 3. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua. Allora $\int_0^1 x^3 f(2x^2) dx = a \frac{1}{8} \int_0^2 t^2 f(t) dt$; $b \frac{1}{2} \int_0^1 t^2 f(t) dt$; $c \frac{1}{8} \int_0^2 t f(t) dt$; $d \frac{1}{2} \int_0^1 t f(t) dt$.
- 4. Sia $a_n > 0$ per ogni $n \ge 0$. Se $\sum_{n=0}^{+\infty} a_n$ è convergente, quale delle seguenti affermazioni è sempre vera? a $\sum_{n=0}^{+\infty} \frac{a_n}{1+a_n}$ è convergente; b $\sum_{n=0}^{+\infty} \frac{1+a_n}{a_n}$ è convergente; c $\sum_{n=0}^{+\infty} \frac{1}{1+a_n}$ è convergente; d $\sum_{n=0}^{+\infty} (1+a_n)$ è convergente.
- 5. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione derivabile due volte, con derivata seconda continua. Si abbia f(0) = 1, f'(0) = -1 e f''(0) = 0, e sia $g(x) = \frac{f(x)-1}{f(x)+2}$. Allora il grafico di g(x) vicino all'origine è:



- 6. Sia f(x) una funzione continua in [a,b], strettamente crescente. Quale delle seguenti affermazioni è sempre vera? a $\int_a^b f(x)dx > f(b)(b-a)$; b $\int_a^b f(x)dx > f(a)(b-a)$; c esiste $\widehat{x} \in (a,b)$ tale che (b-a) $\int_a^b f(x)dx = f(\widehat{x})$; d esiste $\widehat{x} \in (a,b)$ tale che $\int_a^b f(x)dx = f(\widehat{x})$.
- 7. $\lim_{x \to 0} \frac{\sin x x}{x \operatorname{tg}(x^2)} = [a] -12; [b] -2; [c] -6; [d] -1/6.$
- 8. L'insieme dei valori del parametro x > 0 per cui la serie $\sum_{n=0}^{\infty} \frac{n(2x)^n}{2^n + 3^n}$ è convergente è: $\boxed{a} \quad 0 < x < 3; \quad \boxed{b} \quad 0 < x \leq \frac{1}{3}; \quad \boxed{c} \quad 0 < x \leq \frac{2}{3}; \quad \boxed{d} \quad 0 < x < \frac{3}{2}.$

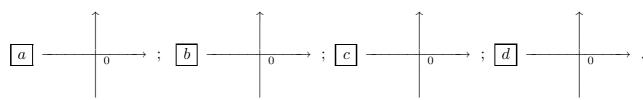
CALCOLO 1		13 gennaio 2006
Cognome:	Nome:	Matricola:

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Sia f(x) una funzione continua in [a,b], strettamente decrescente. Quale delle seguenti affermazioni è sempre vera? $a \int_a^b f(x)dx > f(a)(b-a)$; b esiste $\widehat{x} \in (a,b)$ tale che $(b-a)\int_a^b f(x)dx = f(\widehat{x})$; c esiste $\widehat{x} \in (a,b)$ tale che $\int_a^b f(x)dx = f(\widehat{x})$; d $\int_a^b f(x)dx > f(b)(b-a)$.
- 2. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua. Allora $\int_0^1 x^2 f(2x) dx = a \frac{1}{2} \int_0^1 t^2 f(t) dt$; $b \frac{1}{8} \int_0^2 t f(t) dt$; $c \frac{1}{2} \int_0^1 t f(t) dt$; $d \frac{1}{8} \int_0^2 t^2 f(t) dt$.
- 3. Sia $a_n > 0$ per ogni $n \ge 0$. Se $\sum_{n=0}^{+\infty} \frac{1}{a_n}$ è convergente, quale delle seguenti affermazioni è sempre vera? $\boxed{a} \sum_{n=0}^{+\infty} \frac{1+a_n}{a_n}$ è convergente; $\boxed{b} \sum_{n=0}^{+\infty} \frac{1}{1+a_n}$ è convergente; $\boxed{c} \sum_{n=0}^{+\infty} (1+a_n)$ è convergente; $\boxed{d} \sum_{n=0}^{+\infty} \frac{a_n}{1+a_n}$ è convergente.
- 4. $\lim_{x \to 0} \frac{x \operatorname{tg} x}{\log(1+x) x} = \boxed{a} -2; \boxed{b} -6; \boxed{c} -1/6; \boxed{d} -12.$
- 5. Se y(x) è la soluzione del problema di Cauchy

$$\begin{cases} y' = 2e^y - e^x \\ y(0) = 0 \end{cases}$$

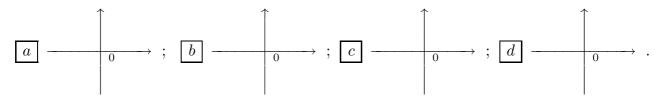
allora il suo polinomio di Taylor di secondo grado (e di centro $x_0 = 0$) è: $a x - \frac{1}{2}x^2$; $b x + \frac{3}{2}x^2$; $c x + x^2$; $d x + \frac{1}{2}x^2$.

- 6. L'insieme dei valori del parametro $\alpha \in \mathbf{R}$ per cui l'integrale generalizzato $\int_0^1 \frac{e^{x^2} 1}{x^\alpha \sin x} dx$ è convergente è: $\boxed{a} \quad \alpha < 0; \quad \boxed{b} \quad \alpha < -1; \quad \boxed{c} \quad \alpha < 2; \quad \boxed{d} \quad \alpha < 1.$
- 7. L'insieme dei valori del parametro x > 0 per cui la serie $\sum_{n=0}^{\infty} \frac{n^2 x^n}{2^n + 3^n}$ è convergente è: $\boxed{a} \ 0 < x \leq \frac{1}{3}; \quad \boxed{b} \ 0 < x \leq \frac{2}{3}; \quad \boxed{c} \ 0 < x < \frac{3}{2}; \quad \boxed{d} \ 0 < x < 3.$
- 8. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione derivabile due volte, con derivata seconda continua. Si abbia f(0) = 1, f'(0) = 1 e f''(0) = 0, e sia $g(x) = \frac{f(x)-1}{f(x)+2}$. Allora il grafico di g(x) vicino all'origine è:



CALCOLO 1		13 gennaio 2006
Cognome:	Nome:	Matricola:

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. L'insieme dei valori del parametro $\alpha \in \mathbf{R}$ per cui l'integrale generalizzato $\int_0^1 \frac{e^x 1}{x^\alpha \sin(x^3)} dx$ è convergente è: $\boxed{a} \quad \alpha < -1; \quad \boxed{b} \quad \alpha < 2; \quad \boxed{c} \quad \alpha < 1; \quad \boxed{d} \quad \alpha < 0.$
- 2. Sia $a_n > 0$ per ogni $n \ge 0$. Se $\sum_{n=0}^{+\infty} a_n$ è convergente, quale delle seguenti affermazioni è sempre vera? $\boxed{a} \sum_{n=0}^{+\infty} \frac{1}{1+a_n}$ è convergente; $\boxed{b} \sum_{n=0}^{+\infty} (1+a_n)$ è convergente; $\boxed{c} \sum_{n=0}^{+\infty} \frac{a_n}{1+a_n}$ è convergente; $\boxed{d} \sum_{n=0}^{+\infty} \frac{1+a_n}{a_n}$ è convergente.
- 3. $\lim_{x \to 0} \frac{x^2 \operatorname{tg}(2x)}{\sin x x} = \boxed{a} 6; \boxed{b} 1/6; \boxed{c} 12; \boxed{d} 2.$
- 4. L'insieme dei valori del parametro x > 0 per cui la serie $\sum_{n=1}^{\infty} \frac{(2^n + 3^n)x^n}{n(n+1)}$ è convergente è: $\boxed{a} \quad 0 < x \leq \frac{2}{3}; \quad \boxed{b} \quad 0 < x < \frac{3}{2}; \quad \boxed{c} \quad 0 < x < 3; \quad \boxed{d} \quad 0 < x \leq \frac{1}{3}.$
- 5. Sia f(x) una funzione continua in [a,b], strettamente crescente. Quale delle seguenti affermazioni è sempre vera? a esiste $\hat{x} \in (a,b)$ tale che $(b-a) \int_a^b f(x) dx = f(\hat{x})$; b esiste $\hat{x} \in (a,b)$ tale che $\int_a^b f(x) dx = f(\hat{x})$; c $\int_a^b f(x) dx > f(b)(b-a)$; d $\int_a^b f(x) dx > f(a)(b-a)$.
- 6. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua. Allora $\int_0^1 x^5 f(x^2) dx = \boxed{a} \frac{1}{8} \int_0^2 t f(t) dt$; $\boxed{b} \frac{1}{2} \int_0^1 t f(t) dt$; $\boxed{c} \frac{1}{8} \int_0^2 t^2 f(t) dt$; $\boxed{d} \frac{1}{2} \int_0^1 t^2 f(t) dt$.
- 7. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione derivabile due volte, con derivata seconda continua. Si abbia f(0) = -1, f'(0) = -1 e f''(0) = 0, e sia $g(x) = \frac{f(x)+1}{f(x)-2}$. Allora il grafico di g(x) vicino all'origine è:



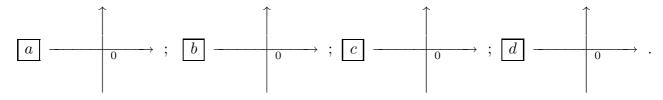
8. Se y(x) è la soluzione del problema di Cauchy

$$\begin{cases} y' = -e^{3y} + 2e^x \\ y(0) = 0 \end{cases},$$

allora il suo polinomio di Taylor di secondo grado (e di centro $x_0 = 0$) è: $a x + \frac{3}{2}x^2$; $b x + x^2$; $c x + \frac{1}{2}x^2$; $d x - \frac{1}{2}x^2$.

CALCOLO 1		13 gennaio 2006
Cognome:	Nome:	Matricola:

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua. Allora $\int_0^1 x^3 f(2x^2) dx = a \frac{1}{2} \int_0^1 t f(t) dt$; $b \frac{1}{8} \int_0^2 t^2 f(t) dt$; $c \frac{1}{2} \int_0^1 t^2 f(t) dt$; $d \frac{1}{8} \int_0^2 t f(t) dt$.
- 2. $\lim_{x \to 0} \frac{\sin x x}{x \operatorname{tg}(x^2)} = \begin{bmatrix} a \end{bmatrix} 1/6; \quad \boxed{b} 12; \quad \boxed{c} 2; \quad \boxed{d} 6.$
- 3. L'insieme dei valori del parametro x > 0 per cui la serie $\sum_{n=0}^{\infty} \frac{n(2x)^n}{2^n + 3^n}$ è convergente è: $\boxed{a} \quad 0 < x < \frac{3}{2}$; $\boxed{b} \quad 0 < x < 3$; $\boxed{c} \quad 0 < x \leq \frac{1}{3}$; $\boxed{d} \quad 0 < x \leq \frac{2}{3}$.
- 4. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione derivabile due volte, con derivata seconda continua. Si abbia f(0) = 1, f'(0) = -1 e f''(0) = 0, e sia $g(x) = \frac{f(x)-1}{f(x)+2}$. Allora il grafico di g(x) vicino all'origine è:



- 5. L'insieme dei valori del parametro $\alpha \in \mathbf{R}$ per cui l'integrale generalizzato $\int_0^1 \frac{\sin x}{x^\alpha \log(1+x^2)} dx$ è convergente è: $\boxed{a} \ \alpha < 2; \ \boxed{b} \ \alpha < 1; \ \boxed{c} \ \alpha < 0; \ \boxed{d} \ \alpha < -1.$
- 6. Sia $a_n > 0$ per ogni $n \ge 0$. Se $\sum_{n=0}^{+\infty} \frac{1}{a_n}$ è convergente, quale delle seguenti affermazioni è sempre vera? $\boxed{a} \sum_{n=0}^{+\infty} (1+a_n)$ è convergente; $\boxed{b} \sum_{n=0}^{+\infty} \frac{a_n}{1+a_n}$ è convergente; $\boxed{c} \sum_{n=0}^{+\infty} \frac{1+a_n}{a_n}$ è convergente; $\boxed{d} \sum_{n=0}^{+\infty} \frac{1}{1+a_n}$ è convergente.
- 7. Se y(x) è la soluzione del problema di Cauchy

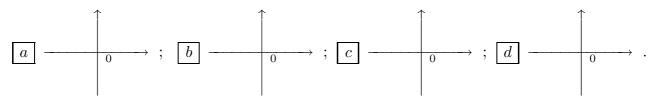
$$\begin{cases} y' = -e^y + 2e^{2x} \\ y(0) = 0 \end{cases},$$

allora il suo polinomio di Taylor di secondo grado (e di centro $x_0 = 0$) è: $a x + x^2$; $b x + \frac{1}{2}x^2$; $c x - \frac{1}{2}x^2$; $d x + \frac{3}{2}x^2$.

8. Sia f(x) una funzione continua in [a,b], strettamente decrescente. Quale delle seguenti affermazioni è sempre vera? \boxed{a} esiste $\widehat{x} \in (a,b)$ tale che $\int_a^b f(x) dx = f(\widehat{x});$ \boxed{b} $\int_a^b f(x) dx > f(b)(b-a);$ \boxed{c} $\int_a^b f(x) dx > f(a)(b-a);$ \boxed{d} esiste $\widehat{x} \in (a,b)$ tale che $(b-a) \int_a^b f(x) dx = f(\widehat{x}).$

CALCOLO 1		13 gennaio 2006
Cognome:	Nome:	Matricola:

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Sia $a_n > 0$ per ogni $n \ge 0$. Se $\sum_{n=0}^{+\infty} a_n$ è convergente, quale delle seguenti affermazioni è sempre vera? a $\sum_{n=0}^{+\infty} \frac{a_n}{1+a_n}$ è convergente; b $\sum_{n=0}^{+\infty} \frac{1+a_n}{a_n}$ è convergente; c $\sum_{n=0}^{+\infty} \frac{1}{1+a_n}$ è convergente; d $\sum_{n=0}^{+\infty} (1+a_n)$ è convergente.
- 2. L'insieme dei valori del parametro x > 0 per cui la serie $\sum_{n=0}^{\infty} \frac{n^2 x^n}{2^n + 3^n}$ è convergente è: $\boxed{a} \ 0 < x < 3;$ $\boxed{b} \ 0 < x \le \frac{1}{3};$ $\boxed{c} \ 0 < x \le \frac{2}{3};$ $\boxed{d} \ 0 < x < \frac{3}{2}.$
- 3. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione derivabile due volte, con derivata seconda continua. Si abbia f(0) = 1, f'(0) = 1 e f''(0) = 0, e sia $g(x) = \frac{f(x)-1}{f(x)+2}$. Allora il grafico di g(x) vicino all'origine è:



4. Se y(x) è la soluzione del problema di Cauchy

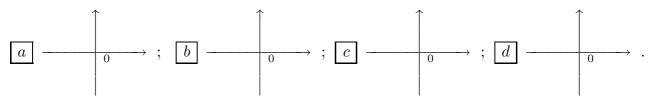
$$\begin{cases} y' = 2e^y - e^x \\ y(0) = 0 \end{cases}$$

allora il suo polinomio di Taylor di secondo grado (e di centro $x_0 = 0$) è: $a x + \frac{1}{2}x^2$; $b x - \frac{1}{2}x^2$; $c x + \frac{3}{2}x^2$; $d x + x^2$.

- 5. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua. Allora $\int_0^1 x^2 f(2x) \, dx = \boxed{a} \frac{1}{8} \int_0^2 t^2 f(t) \, dt$; $\boxed{b} \frac{1}{2} \int_0^1 t^2 f(t) \, dt$; $\boxed{c} \frac{1}{8} \int_0^2 t f(t) \, dt$; $\boxed{d} \frac{1}{2} \int_0^1 t f(t) \, dt$.
- 6. $\lim_{x \to 0} \frac{x \operatorname{tg} x}{\log(1+x) x} = \boxed{a} -12; \boxed{b} -2; \boxed{c} -6; \boxed{d} -1/6.$
- 7. Sia f(x) una funzione continua in [a,b], strettamente crescente. Quale delle seguenti affermazioni è sempre vera? a $\int_a^b f(x)dx > f(b)(b-a)$; b $\int_a^b f(x)dx > f(a)(b-a)$; c esiste $\widehat{x} \in (a,b)$ tale che (b-a) $\int_a^b f(x)dx = f(\widehat{x})$; d esiste $\widehat{x} \in (a,b)$ tale che $\int_a^b f(x)dx = f(\widehat{x})$.
- 8. L'insieme dei valori del parametro $\alpha \in \mathbf{R}$ per cui l'integrale generalizzato $\int_0^1 \frac{e^{x^2}-1}{x^\alpha \sin x} dx$ è convergente è: \boxed{a} $\alpha < 1$; \boxed{b} $\alpha < 0$; \boxed{c} $\alpha < -1$; \boxed{d} $\alpha < 2$.

CALCOLO 1		13 gennaio 2006
Cognome:	Nome:	Matricola:

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. $\lim_{x \to 0} \frac{x^2 \operatorname{tg}(2x)}{\sin x x} = \boxed{a} 2; \boxed{b} 6; \boxed{c} 1/6; \boxed{d} 12.$
- 2. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione derivabile due volte, con derivata seconda continua. Si abbia f(0) = -1, f'(0) = -1 e f''(0) = 0, e sia $g(x) = \frac{f(x)+1}{f(x)-2}$. Allora il grafico di g(x) vicino all'origine è:



3. Se y(x) è la soluzione del problema di Cauchy

$$\begin{cases} y' = -e^{3y} + 2e^x \\ y(0) = 0 \end{cases},$$

allora il suo polinomio di Taylor di secondo grado (e di centro $x_0 = 0$) è: $a x - \frac{1}{2}x^2$; $b x + \frac{3}{2}x^2$; $c x + x^2$; $d x + \frac{1}{2}x^2$.

- 4. Sia f(x) una funzione continua in [a,b], strettamente decrescente. Quale delle seguenti affermazioni è sempre vera? $a \int_a^b f(x)dx > f(a)(b-a)$; b esiste $\widehat{x} \in (a,b)$ tale che $(b-a)\int_a^b f(x)dx = f(\widehat{x})$; c esiste $\widehat{x} \in (a,b)$ tale che $\int_a^b f(x)dx = f(\widehat{x})$; d $\int_a^b f(x)dx > f(b)(b-a)$.
- 5. Sia $a_n > 0$ per ogni $n \ge 0$. Se $\sum_{n=0}^{+\infty} \frac{1}{a_n}$ è convergente, quale delle seguenti affermazioni è sempre vera? $\boxed{a} \sum_{n=0}^{+\infty} \frac{1+a_n}{a_n}$ è convergente; $\boxed{b} \sum_{n=0}^{+\infty} \frac{1}{1+a_n}$ è convergente; $\boxed{c} \sum_{n=0}^{+\infty} (1+a_n)$ è convergente; $\boxed{d} \sum_{n=0}^{+\infty} \frac{a_n}{1+a_n}$ è convergente.
- 6. L'insieme dei valori del parametro x > 0 per cui la serie $\sum_{n=1}^{\infty} \frac{(2^n + 3^n)x^n}{n(n+1)}$ è convergente è: $a \quad 0 < x \le \frac{1}{3}; \quad b \quad 0 < x \le \frac{2}{3}; \quad c \quad 0 < x < \frac{3}{2}; \quad d \quad 0 < x < 3.$
- 7. L'insieme dei valori del parametro $\alpha \in \mathbf{R}$ per cui l'integrale generalizzato $\int_0^1 \frac{e^x 1}{x^\alpha \sin(x^3)} dx$ è convergente è: $\boxed{a} \quad \alpha < 0; \quad \boxed{b} \quad \alpha < -1; \quad \boxed{c} \quad \alpha < 2; \quad \boxed{d} \quad \alpha < 1.$
- 8. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua. Allora $\int_0^1 x^5 f(x^2) dx = a \frac{1}{2} \int_0^1 t^2 f(t) dt$; $b \frac{1}{8} \int_0^2 t f(t) dt$; $c \frac{1}{2} \int_0^1 t f(t) dt$; $d \frac{1}{8} \int_0^2 t^2 f(t) dt$.