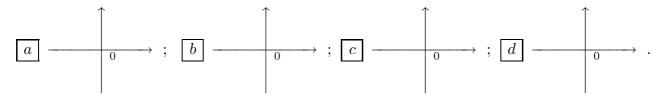
CALCOLO 1		15 gennaio 2008
Cognome:	Nome:	Matricola:

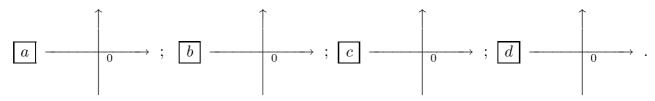
- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Siano $P(x) = 2x^3 3x^2 + x 1$ e Q(x) = 2x 1. Indicata la divisione di P(x) rispetto a Q(x) come $\frac{P(x)}{Q(x)} = S(x) + \frac{R(x)}{Q(x)}$, il polinomio S(x) è dato da: a $x^2 x 2$; b $x^2 x + 1/2$; c $x^2 x$; d $x^2 x + 4/3$.
- 2. Il limite $\lim_{n\to\infty} \left(\frac{n^2+n}{n^2+1}\right)^n$ è uguale a: $a = \frac{1}{e}$; $b = +\infty$; c = 0; d = e.
- 3. Siano $g(y) = \frac{y^2}{1-y}$ e $f(x) = e^{x/2}$. Allora l'insieme dove la funzione $(g \circ f)(x)$ (definita per $x \neq 0$) è decrescente è l'insieme dato da: $a \neq 0$ $x \geq \log 2$; $b \neq 0$ $x \leq \frac{1}{2} \log \frac{1}{2}$; $c \neq 0$ $x \leq 2 \log 2$; $c \neq 0$ $x \leq \log \frac{1}{2}$.
- 4. Siano $a_n > 0$ e $b_n > 0$. Se la serie $\sum_{n=0}^{\infty} a_n b_n$ è convergente, allora: $\boxed{a} \sum_{n=0}^{\infty} \frac{b_n^2}{a_n^2}$ è convergente; $\boxed{b} \sum_{n=0}^{\infty} (a_n^2 + b_n^2)$ è divergente; $\boxed{c} \sum_{n=0}^{\infty} a_n^2 b_n^2$ è convergente; $\boxed{d} \sum_{n=0}^{\infty} \frac{a_n^2}{b_n^2}$ è convergente.
- 5. L'insieme dei valori del parametro $\alpha>0$ per cui l'integrale $\int_0^1 \frac{x^2 e^{2x}}{\sin(x^\alpha)} dx$ è un integrale improprio e come integrale improprio è convergente è dato da: $\boxed{a} \quad \frac{1}{2} < \alpha < 1;$ $\boxed{b} \quad 2 < \alpha < 3; \quad \boxed{c} \quad 1 < \alpha < \frac{3}{2}; \quad \boxed{d} \quad 1 < \alpha < 2.$
- 6. Il numero complesso $(-1+i)^3$ è:



- 7. Sia $f:[0,+\infty)\to \mathbf{R}$ continua, derivabile e tale che $f'(x)\geq 0$ per ogni $x\in[0,+\infty)$. Allora: \boxed{a} f non è limitata; \boxed{b} f ha un valore minimo in $[0,+\infty)$; \boxed{c} f ha un valore massimo in $[0,+\infty)$; \boxed{d} f(0)< f(x) per ogni $x\in(0,+\infty)$.
- 8. Se, per x > 0, $f(x) = \int_3^{x^2+2} \frac{1}{t^2-4} dt$, allora $f'(x) = a \frac{2}{x^3+2x}$; $b \frac{2}{x^3+x}$; $c \frac{2}{x^3+4x}$; $d \frac{2}{x^3+3x}$.

CALCOLO 1		15 gennaio 2008
Cognome:	Nome:	Matricola:

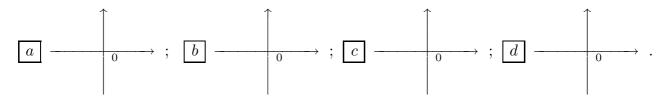
- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Il numero complesso $(-1+i)^3$ è:



- 2. Siano $g(y) = \frac{y^2}{1-y}$ e $f(x) = e^{-x}$. Allora l'insieme dove la funzione $(g \circ f)(x)$ (definita per $x \neq 0$) è crescente è l'insieme dato da: $a \mid x \leq \frac{1}{2} \log \frac{1}{2}$; $b \mid x \geq 2 \log 2$; $c \mid x \leq \log \frac{1}{2}$; $d \mid x \geq \log 2$.
- 3. Siano $a_n > 0$ e $b_n > 0$. Se le serie $\sum_{n=0}^{\infty} a_n$ e $\sum_{n=0}^{\infty} \sqrt{b_n}$ sono convergenti, allora: $a \sum_{n=0}^{\infty} (a_n^2 + b_n^2)$ è divergente; $b \sum_{n=0}^{\infty} a_n^2 b_n^2$ è convergente; $c \sum_{n=0}^{\infty} \frac{a_n^2}{b_n^2}$ è convergente.
- 4. Sia $f:[0,+\infty)\to \mathbf{R}$ continua, derivabile e tale che $f'(x)\leq 0$ per ogni $x\in[0,+\infty)$. Allora: a f ha un valore minimo in $[0,+\infty)$; b f ha un valore massimo in $[0,+\infty)$; c f(0)>f(x) per ogni $x\in(0,+\infty)$; d f non è limitata.
- 5. Siano $P(x) = 3x^3 x^2 + 2x + 1$ e Q(x) = 3x + 2. Indicata la divisione di P(x) rispetto a Q(x) come $\frac{P(x)}{Q(x)} = S(x) + \frac{R(x)}{Q(x)}$, il polinomio S(x) è dato da: $\boxed{a} x^2 x + 1/2$; $\boxed{b} x^2 x$; $\boxed{c} x^2 x + 4/3$; $\boxed{d} x^2 x 2$.
- 6. Il limite $\lim_{n\to\infty} \left(\frac{2n^2+1}{n^2+n}\right)^n$ è uguale a: $a + \infty$; b = 0; $c = d = \frac{1}{e}$.
- 7. Se, per x > 0, $f(x) = \int_2^{x^2+1} \frac{1}{t^2-1} dt$, allora $f'(x) = \boxed{a} \frac{2}{x^3+x}$; $\boxed{b} \frac{2}{x^3+4x}$; $\boxed{c} \frac{2}{x^3+3x}$; $\boxed{d} \frac{2}{x^3+2x}$.
- 8. L'insieme dei valori del parametro $\alpha>0$ per cui l'integrale $\int_0^1 \frac{x \log(2+x)}{1-\cos(x^\alpha)} dx$ è un integrale improprio e come integrale improprio è convergente è dato da: $\boxed{a} \ 2<\alpha<3;$ $\boxed{b} \ 1<\alpha<\frac{3}{2}; \ \boxed{c} \ 1<\alpha<2;$ $\boxed{d} \ \frac{1}{2}<\alpha<1.$

CALCOLO 1		15 gennaio 2008
Cognome:	Nome:	Matricola:

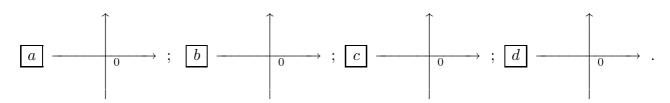
- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Il limite $\lim_{n\to\infty} \left(\frac{n^2-n}{n^2+1}\right)^n$ è uguale a: a = 0; b = e; $c = \frac{1}{e}$; $d = +\infty$.
- 2. Siano $a_n > 0$ e $b_n > 0$. Se le serie $\sum_{n=0}^{\infty} \sqrt{a_n}$ e $\sum_{n=0}^{\infty} b_n$ sono convergenti, allora: $a \sum_{n=0}^{\infty} a_n^2 b_n^2$ è convergente; $b \sum_{n=0}^{\infty} \frac{a_n^2}{b_n^2}$ è convergente; $c \sum_{n=0}^{\infty} \frac{b_n^2}{a_n^2}$ è convergente; $d \sum_{n=0}^{\infty} (a_n^2 + b_n^2)$ è divergente.
- 3. Sia $f:[0,+\infty)\to \mathbf{R}$ continua, derivabile e tale che $f'(x)\geq 0$ per ogni $x\in[0,+\infty)$. Allora: a f ha un valore massimo in $[0,+\infty)$; b f(0)< f(x) per ogni $x\in(0,+\infty)$; c f non è limitata; d f ha un valore minimo in $[0,+\infty)$.
- 4. Se, per x > 0, $f(x) = \int_2^{x^2+1} \frac{1}{t^2-t} dt$, allora $f'(x) = \boxed{a} \frac{2}{x^3+4x}$; $\boxed{b} \frac{2}{x^3+3x}$; $\boxed{c} \frac{2}{x^3+2x}$; $\boxed{d} \frac{2}{x^3+x}$.
- 5. Il numero complesso $(-1-i)^3$ è:



- 6. Siano $g(y) = \frac{y^2}{1-y}$ e $f(x) = e^{x/2}$. Allora l'insieme dove la funzione $(g \circ f)(x)$ (definita per $x \neq 0$) è decrescente è l'insieme dato da: $a \neq 2 \log 2$; $b \neq x \leq \log \frac{1}{2}$; $c \neq x \leq \log 2$; $d \neq x \leq \frac{1}{2} \log \frac{1}{2}$.
- 7. L'insieme dei valori del parametro $\alpha > 0$ per cui l'integrale $\int_0^1 \frac{x \cos(2x)}{\log(1+x^{\alpha})} dx$ è un integrale improprio e come integrale improprio è convergente è dato da: $\boxed{a} \quad 1 < \alpha < \frac{3}{2};$ $\boxed{b} \quad 1 < \alpha < 2; \quad \boxed{c} \quad \frac{1}{2} < \alpha < 1; \quad \boxed{d} \quad 2 < \alpha < 3.$
- 8. Siano $P(x) = -x^3 + 2x^2 + x 3$ e Q(x) = -x + 1. Indicata la divisione di P(x) rispetto a Q(x) come $\frac{P(x)}{Q(x)} = S(x) + \frac{R(x)}{Q(x)}$, il polinomio S(x) è dato da: $\boxed{a} x^2 x$; $\boxed{b} x^2 x + 4/3$; $\boxed{c} x^2 x 2$; $\boxed{d} x^2 x + 1/2$.

CALCOLO 1		15 gennaio 2008
Cognome:	Nome:	Matricola:

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Siano $g(y) = \frac{y^2}{1-y}$ e $f(x) = e^{-x}$. Allora l'insieme dove la funzione $(g \circ f)(x)$ (definita per $x \neq 0$) è crescente è l'insieme dato da: $a \mid x \leq \log \frac{1}{2}$; $b \mid x \geq \log 2$; $c \mid x \leq \frac{1}{2} \log \frac{1}{2}$; $d \mid x \geq 2 \log 2$.
- 2. Sia $f:[0,+\infty)\to \mathbf{R}$ continua, derivabile e tale che $f'(x)\leq 0$ per ogni $x\in[0,+\infty)$. Allora: a f(0)>f(x) per ogni $x\in(0,+\infty)$; b f non è limitata; c f ha un valore minimo in $[0,+\infty)$; d f ha un valore massimo in $[0,+\infty)$.
- 3. Se, per x > 0, $f(x) = \int_3^{x^2+2} \frac{1}{t^2-2t} dt$, allora $f'(x) = \boxed{a} \frac{2}{x^3+3x}$; $\boxed{b} \frac{2}{x^3+2x}$; $\boxed{c} \frac{2}{x^3+x}$; $\boxed{d} \frac{2}{x^3+4x}$.
- 4. L'insieme dei valori del parametro $\alpha>0$ per cui l'integrale $\int_0^1 \frac{x^2 e^x}{1-\cos(x^\alpha)} dx$ è un integrale improprio e come integrale improprio è convergente è dato da: $\boxed{a} \quad 1<\alpha<2;$ $\boxed{b} \quad \frac{1}{2}<\alpha<1; \quad \boxed{c} \quad 2<\alpha<3; \quad \boxed{d} \quad 1<\alpha<\frac{3}{2}.$
- 5. Il limite $\lim_{n\to\infty} \left(\frac{n^2+n}{2n^2+1}\right)^n$ è uguale a: $a \in [b] = \frac{1}{e}; c + \infty; d = 0.$
- 6. Siano $a_n > 0$ e $b_n > 0$. Se la serie $\sum_{n=0}^{\infty} \sqrt{a_n b_n}$ è convergente, allora: a $\sum_{n=0}^{\infty} \frac{a_n^2}{b_n^2}$ è convergente; b $\sum_{n=0}^{\infty} \frac{b_n^2}{a_n^2}$ è convergente; c $\sum_{n=0}^{\infty} (a_n^2 + b_n^2)$ è divergente; d $\sum_{n=0}^{\infty} a_n^2 b_n^2$ è convergente.
- 7. Siano $P(x) = 2x^3 3x^2 + x 1$ e Q(x) = 2x 1. Indicata la divisione di P(x) rispetto a Q(x) come $\frac{P(x)}{Q(x)} = S(x) + \frac{R(x)}{Q(x)}$, il polinomio S(x) è dato da: $a = x^2 x + 4/3$; $b = x^2 x 2$; $c = x^2 x + 1/2$; $d = x^2 x$.
- 8. Il numero complesso $(-1-i)^3$ è:



CALCOLO 1		15 gennaio 2008
Cognome:	Nome:	Matricola:

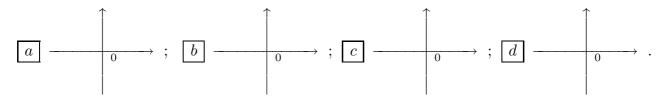
- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Siano $a_n > 0$ e $b_n > 0$. Se la serie $\sum_{n=0}^{\infty} \sqrt{a_n b_n}$ è convergente, allora: a $\sum_{n=0}^{\infty} \frac{b_n^2}{a_n^2}$ è convergente; b $\sum_{n=0}^{\infty} (a_n^2 + b_n^2)$ è divergente; c $\sum_{n=0}^{\infty} a_n^2 b_n^2$ è convergente; d $\sum_{n=0}^{\infty} \frac{a_n^2}{b_n^2}$ è convergente.
- 2. Se, per x > 0, $f(x) = \int_3^{x^2+2} \frac{1}{t^2-2t} dt$, allora $f'(x) = \boxed{a} \frac{2}{x^3+2x}$; $\boxed{b} \frac{2}{x^3+x}$; $\boxed{c} \frac{2}{x^3+4x}$; $\boxed{d} \frac{2}{x^3+3x}$.
- 3. L'insieme dei valori del parametro $\alpha>0$ per cui l'integrale $\int_0^1 \frac{x^2 e^x}{1-\cos(x^\alpha)} \, dx$ è un integrale improprio e come integrale improprio è convergente è dato da: $\boxed{a} \quad \frac{1}{2} < \alpha < 1;$ $\boxed{b} \quad 2 < \alpha < 3; \quad \boxed{c} \quad 1 < \alpha < \frac{3}{2}; \quad \boxed{d} \quad 1 < \alpha < 2.$
- 4. Siano $P(x) = -2x^3 + 3x^2 2x 1$ e Q(x) = -2x + 1. Indicata la divisione di P(x) rispetto a Q(x) come $\frac{P(x)}{Q(x)} = S(x) + \frac{R(x)}{Q(x)}$, il polinomio S(x) è dato da: a $x^2 x 2$; b $x^2 x + 1/2$; c $x^2 x$; d $x^2 x + 4/3$.
- 5. Siano $g(y) = \frac{y^2+2}{2y}$ e $f(x) = e^{x/2}$. Allora l'insieme dove la funzione $(g \circ f)(x)$ è crescente è l'insieme dato da: $a \mid x \ge \log 2$; $b \mid x \le \frac{1}{2} \log \frac{1}{2}$; $c \mid x \ge 2 \log 2$; $d \mid x \le \log \frac{1}{2}$.
- 6. Sia $f:[0,+\infty)\to \mathbf{R}$ continua, derivabile e tale che $f'(x)\geq 0$ per ogni $x\in[0,+\infty)$. Allora: \boxed{a} f non è limitata; \boxed{b} f ha un valore minimo in $[0,+\infty)$; \boxed{c} f ha un valore massimo in $[0,+\infty)$; \boxed{d} f(0)< f(x) per ogni $x\in(0,+\infty)$.
- 7. Il numero complesso $(1+\sqrt{3}i)^3$ è:



8. Il limite $\lim_{n\to\infty} \left(\frac{n^2+n}{n^2+1}\right)^n$ è uguale a: $a = \frac{1}{e}$; $b = +\infty$; c = 0; d = e.

CALCOLO 1		15 gennaio 2008
Cognome:	Nome:	Matricola:

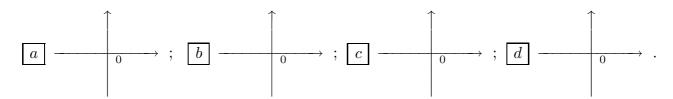
- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Sia $f:[0,+\infty)\to \mathbf{R}$ continua, derivabile e tale che $f'(x)\leq 0$ per ogni $x\in[0,+\infty)$. Allora: a f ha un valore minimo in $[0,+\infty)$; b f ha un valore massimo in $[0,+\infty)$; c f(0)>f(x) per ogni $x\in(0,+\infty)$; d f non è limitata.
- 2. L'insieme dei valori del parametro $\alpha>0$ per cui l'integrale $\int_0^1 \frac{x\cos(2x)}{\log(1+x^\alpha)}\,dx$ è un integrale improprio e come integrale improprio è convergente è dato da: $\boxed{a} \ 2<\alpha<3;$ $\boxed{b} \ 1<\alpha<\frac{3}{2}; \ \boxed{c} \ 1<\alpha<2;$ $\boxed{d} \ \frac{1}{2}<\alpha<1.$
- 3. Siano $P(x) = -2x^3 + 3x^2 2x 1$ e Q(x) = -2x + 1. Indicata la divisione di P(x) rispetto a Q(x) come $\frac{P(x)}{Q(x)} = S(x) + \frac{R(x)}{Q(x)}$, il polinomio S(x) è dato da: $\boxed{a} x^2 x + 1/2$; $\boxed{b} x^2 x$; $\boxed{c} x^2 x + 4/3$; $\boxed{d} x^2 x 2$.
- 4. Il numero complesso $(1+\sqrt{3}i)^3$ è:



- 5. Siano $a_n > 0$ e $b_n > 0$. Se le serie $\sum_{n=0}^{\infty} a_n$ e $\sum_{n=0}^{\infty} \sqrt{b_n}$ sono convergenti, allora: $a \sum_{n=0}^{\infty} (a_n^2 + b_n^2)$ è divergente; $b \sum_{n=0}^{\infty} a_n^2 b_n^2$ è convergente; $c \sum_{n=0}^{\infty} \frac{a_n^2}{b_n^2}$ è convergente.
- 6. Se, per x > 0, $f(x) = \int_2^{x^2+1} \frac{1}{t^2-t} dt$, allora $f'(x) = \boxed{a} \frac{2}{x^3+x}$; $\boxed{b} \frac{2}{x^3+4x}$; $\boxed{c} \frac{2}{x^3+3x}$; $\boxed{d} \frac{2}{x^3+2x}$.
- 7. Il limite $\lim_{n\to\infty} \left(\frac{2n^2+1}{n^2+n}\right)^n$ è uguale a: $a + \infty$; b = 0; $c = \frac{1}{e}$.
- 8. Siano $g(y) = \frac{y^2 + 2}{2y}$ e $f(x) = e^{-x}$. Allora l'insieme dove la funzione $(g \circ f)(x)$ è decrescente è l'insieme dato da: $a \mid x \leq \frac{1}{2} \log \frac{1}{2}$; $b \mid x \geq 2 \log 2$; $c \mid x \leq \log \frac{1}{2}$; $d \mid x \geq \log 2$.

CALCOLO 1		15 gennaio 2008
Cognome:	Nome:	Matricola:

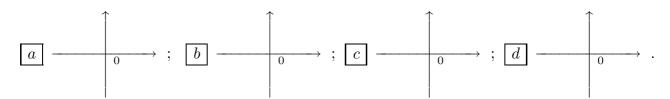
- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Se, per x > 0, $f(x) = \int_2^{x^2+1} \frac{1}{t^2-1} dt$, allora $f'(x) = a \frac{2}{x^3+4x}$; $b \frac{2}{x^3+3x}$; $c \frac{2}{x^3+2x}$; $d \frac{2}{x^3+x}$.
- 2. Siano $P(x) = -x^3 + 2x^2 + x 3$ e Q(x) = -x + 1. Indicata la divisione di P(x) rispetto a Q(x) come $\frac{P(x)}{Q(x)} = S(x) + \frac{R(x)}{Q(x)}$, il polinomio S(x) è dato da: a $x^2 x$; b $x^2 x + 4/3$; c $x^2 x 2$; d $x^2 x + 1/2$.
- 3. Il numero complesso $(\sqrt{3}+i)^3$ è:



- 4. Il limite $\lim_{n\to\infty} \left(\frac{n^2-n}{n^2+1}\right)^n$ è uguale a: a = 0; b = e; $c = \frac{1}{e}$; $d = +\infty$.
- 5. Sia $f:[0,+\infty)\to \mathbf{R}$ continua, derivabile e tale che $f'(x)\geq 0$ per ogni $x\in[0,+\infty)$. Allora: a f ha un valore massimo in $[0,+\infty)$; b f(0)< f(x) per ogni $x\in(0,+\infty)$; c f non è limitata; d f ha un valore minimo in $[0,+\infty)$.
- 6. L'insieme dei valori del parametro $\alpha > 0$ per cui l'integrale $\int_0^1 \frac{x \log(2+x)}{1-\cos(x^{\alpha})} dx$ è un integrale improprio e come integrale improprio è convergente è dato da: $\boxed{a} \quad 1 < \alpha < \frac{3}{2};$ $\boxed{b} \quad 1 < \alpha < 2; \quad \boxed{c} \quad \frac{1}{2} < \alpha < 1; \quad \boxed{d} \quad 2 < \alpha < 3.$
- 7. Siano $g(y) = \frac{y^2+2}{2y}$ e $f(x) = e^{x/2}$. Allora l'insieme dove la funzione $(g \circ f)(x)$ è crescente è l'insieme dato da: $a \in 2 \log 2$; $b \in x \leq \log \frac{1}{2}$; $c \in x \geq \log 2$; $d \in x \leq \frac{1}{2} \log \frac{1}{2}$.
- 8. Siano $a_n > 0$ e $b_n > 0$. Se la serie $\sum_{n=0}^{\infty} a_n b_n$ è convergente, allora: $a \sum_{n=0}^{\infty} a_n^2 b_n^2$ è convergente; $b \sum_{n=0}^{\infty} \frac{a_n^2}{b_n^2}$ è convergente; $c \sum_{n=0}^{\infty} \frac{b_n^2}{a_n^2}$ è convergente; $d \sum_{n=0}^{\infty} (a_n^2 + b_n^2)$ è divergente.

CALCOLO 1		15 gennaio 2008
Cognome:	Nome:	Matricola:

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. L'insieme dei valori del parametro $\alpha > 0$ per cui l'integrale $\int_0^1 \frac{x^2 e^{2x}}{\sin(x^{\alpha})} dx$ è un integrale improprio e come integrale improprio è convergente è dato da: $\boxed{a} \quad 1 < \alpha < 2;$ $\boxed{b} \quad \frac{1}{2} < \alpha < 1; \quad \boxed{c} \quad 2 < \alpha < 3; \quad \boxed{d} \quad 1 < \alpha < \frac{3}{2}.$
- 2. Il numero complesso $(\sqrt{3}+i)^3$ è:



- 3. Il limite $\lim_{n\to\infty} \left(\frac{n^2+n}{2n^2+1}\right)^n$ è uguale a: $a \in [b] = \frac{1}{e}; c +\infty; d = 0.$
- 4. Siano $g(y) = \frac{y^2+2}{2y}$ e $f(x) = e^{-x}$. Allora l'insieme dove la funzione $(g \circ f)(x)$ è decrescente è l'insieme dato da: $a \mid x \leq \log \frac{1}{2}$; $b \mid x \geq \log 2$; $c \mid x \leq \frac{1}{2} \log \frac{1}{2}$; $d \mid x \geq 2 \log 2$.
- 5. Se, per x > 0, $f(x) = \int_3^{x^2+2} \frac{1}{t^2-4} dt$, allora $f'(x) = \boxed{a} \frac{2}{x^3+3x}$; $\boxed{b} \frac{2}{x^3+2x}$; $\boxed{c} \frac{2}{x^3+x}$; $\boxed{d} \frac{2}{x^3+4x}$.
- 6. Siano $P(x) = 3x^3 x^2 + 2x + 1$ e Q(x) = 3x + 2. Indicata la divisione di P(x) rispetto a Q(x) come $\frac{P(x)}{Q(x)} = S(x) + \frac{R(x)}{Q(x)}$, il polinomio S(x) è dato da: $a = x^2 x + 4/3$; $b = x^2 x 2$; $c = x^2 x + 1/2$; $d = x^2 x$.
- 7. Siano $a_n > 0$ e $b_n > 0$. Se le serie $\sum_{n=0}^{\infty} \sqrt{a_n}$ e $\sum_{n=0}^{\infty} b_n$ sono convergenti, allora: $a \sum_{n=0}^{\infty} \frac{a_n^2}{b_n^2}$ è convergente; $b \sum_{n=0}^{\infty} \frac{b_n^2}{a_n^2}$ è convergente; $c \sum_{n=0}^{\infty} (a_n^2 + b_n^2)$ è divergente; $c \sum_{n=0}^{\infty} a_n^2 b_n^2$ è convergente.
- 8. Sia $f:[0,+\infty)\to \mathbf{R}$ continua, derivabile e tale che $f'(x)\leq 0$ per ogni $x\in[0,+\infty)$. Allora: a f(0)>f(x) per ogni $x\in(0,+\infty)$; b f non è limitata; c f ha un valore minimo in $[0,+\infty)$; d f ha un valore massimo in $[0,+\infty)$.