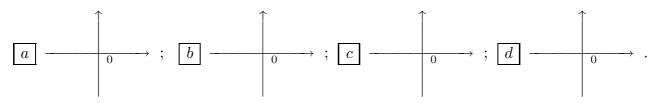
CALCOLO 1		31 agosto 2007
Cognome:	Nome:	Matricola:

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Sia $f(t)=2t^3+1$. Allora l'equazione della retta tangente al grafico della funzione inversa $f^{-1}(x)$ nel punto $(3,f^{-1}(3))$ è: $a y = -\frac{1}{3}x + \frac{4}{3}$; $b y = -\frac{1}{6}x + \frac{7}{6}$; $c y = \frac{1}{6}x + \frac{1}{2}$; $d y = \frac{1}{12}x + \frac{17}{12}$.
- 2. $\lim_{x \to 0^+} (x+1)^{1/x^2} = [a] e; [b] +\infty; [c] 0; [d] 1.$
- 3. Sia $f:[a,b]\to \mathbf{R}$ una funzione derivabile. Se l'estremo a è un punto di massimo relativo, allora è sempre vero che: \boxed{a} $f'(a) \leq 0$; \boxed{b} f'(a) < 0; \boxed{c} $f'(a) \geq 0$; \boxed{d} f'(a) > 0.
- 4. Sia x > 0. La somma della serie $\sum_{n=2}^{\infty} \left(\frac{1}{1+x}\right)^n$ è: $\boxed{a} \frac{1}{x^2+3x+2}$; $\boxed{b} \frac{1}{x^2+5x+6}$; $\boxed{c} \frac{1}{x^2+x}$; $\boxed{d} \frac{1}{4x^2+2x}$.
- 5. Sia f(x) una funzione derivabile due volte con f(0) = 1, f'(0) = 0, f''(0) = 1. Il grafico del polinomio di Taylor di secondo grado e di centro $x_0 = 0$ della funzione f è



- 6. Siano $f(x) = x^2 \alpha x$ e $g(x) = \frac{\beta}{(x-2)^2}$. Per quali valori dei parametri α e β si ha $\int_0^1 f(x) dx = \int_0^1 g(x) dx$ e f(0) = g(0)? \boxed{a} $\alpha = -3$, $\beta = 0$; \boxed{b} $\alpha = 0$, $\beta = 3$; \boxed{c} $\alpha = 2/3$, $\beta = 0$; \boxed{d} $\alpha = 0$, $\beta = 2/3$.
- 7. Per quali valori dei parametri a e b si ha che

$$\lim_{x\to 0} \left(a\frac{1-\cos x}{2x^2} + 3bx\sin\frac{1}{x}\right) = 1 \quad \text{ e} \quad \lim_{x\to +\infty} \left(a\frac{1-\cos x}{2x^2} + 3bx\sin\frac{1}{x}\right) = 1?$$

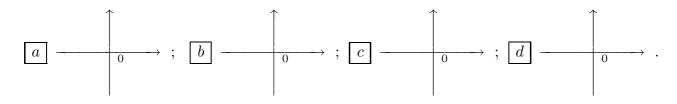
8. Sia f(x) una funzione derivabile due volte. Se f(0) = f(2) = f(4) = 0 (e non ci sono altri punti di azzeramento), quante volte si annulla f''(x)? almeno due volte; b esattamente due volte; c almeno una volta; d esattamente una volta.

CALCOLO 1		31 agosto 2007
Cognome:	Nome:	Matricola:

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Siano $f(x) = x^2 \beta x$ e $g(x) = \frac{\alpha}{(x-3)^2}$. Per quali valori dei parametri α e β si ha $\int_0^1 f(x) \, dx = \int_0^1 g(x) \, dx$ e f(0) = g(0)? \boxed{a} $\alpha = 0$, $\beta = 3$; \boxed{b} $\alpha = 2/3$, $\beta = 0$; \boxed{c} $\alpha = 0$, $\beta = 2/3$; \boxed{d} $\alpha = -3$, $\beta = 0$.
- 2. Sia $f:[a,b]\to \mathbf{R}$ una funzione derivabile. Se l'estremo b è un punto di massimo relativo, allora è sempre vero che: \boxed{a} f'(b)<0; \boxed{b} $f'(b)\geq0$; \boxed{c} f'(b)>0; \boxed{d} $f'(b)\leq0$.
- 3. Sia x > 0. La somma della serie $\sum_{n=2}^{\infty} \left(\frac{1}{1+2x}\right)^n$ è: $\boxed{a} \frac{1}{x^2+5x+6}; \boxed{b} \frac{1}{x^2+x}; \boxed{c} \frac{1}{4x^2+2x};$ $\boxed{d} \frac{1}{x^2+3x+2}.$
- 4. Per quali valori dei parametri a e b si ha che

$$\lim_{x \to 0} \left(a \frac{\sin x}{6x} - 2b(1 - e^{-x}) \right) = 1 \quad \text{e} \quad \lim_{x \to +\infty} \left(a \frac{\sin x}{6x} - 2b(1 - e^{-x}) \right) = 1?$$

- 5. Sia $f(t)=t^3-1$. Allora l'equazione della retta tangente al grafico della funzione inversa $f^{-1}(x)$ nel punto $(7, f^{-1}(7))$ è: $a y = -\frac{1}{6}x + \frac{7}{6}$; $b y = \frac{1}{6}x + \frac{1}{2}$; $c y = \frac{1}{12}x + \frac{17}{12}$; $d y = -\frac{1}{3}x + \frac{4}{3}$.
- 6. $\lim_{x \to 0^+} (x^2 + 1)^{1/x} = \boxed{a} + \infty; \boxed{b} \ 0; \boxed{c} \ 1; \boxed{d} \ e.$
- 7. Sia f(x) un polinomio di terzo grado. Se f(0) = f(2) = f(4) = 0 (e non ci sono altri punti di azzeramento), quante volte si annulla f''(x)? a esattamente due volte; b almeno una volta; c esattamente una volta; d almeno due volte.
- 8. Sia f(x) una funzione derivabile due volte con f(0) = 1, f'(0) = 1, f''(0) = -1. Il grafico del polinomio di Taylor di secondo grado e di centro $x_0 = 0$ della funzione f è



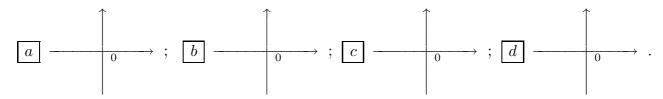
CALCOLO 1		31 agosto 2007
Cognome:	Nome:	Matricola:

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. $\lim_{x \to 0^+} (1 x^2)^{1/x} = [a] 0; [b] 1; [c] e; [d] +\infty.$
- 2. Sia x > 0. La somma della serie $\sum_{n=2}^{\infty} \left(\frac{1}{2+x}\right)^n$ è: $a = \frac{1}{x^2+x}$; $b = \frac{1}{4x^2+2x}$; $c = \frac{1}{x^2+3x+2}$; $a = \frac{1}{x^2+5x+6}$.
- 3. Per quali valori dei parametri a e b si ha che

$$\lim_{x \to 0} \left(a \frac{1 - \cos x}{2x^2} - 3b(1 - e^{-x}) \right) = 1 \quad \text{e} \quad \lim_{x \to +\infty} \left(a \frac{1 - \cos x}{2x^2} - 3b(1 - e^{-x}) \right) = 1?$$

$$\boxed{a} \ a=4, \ b=1/3; \ \boxed{b} \ a=6, \ b=-1/2; \ \boxed{c} \ a=4, \ b=-1/3; \ \boxed{d} \ a=6, \ b=1/2.$$

- 4. Sia f(x) una funzione derivabile due volte. Se f(0) = f(2) = f(4) = f(6) = 0 (e non ci sono altri punti di azzeramento), quante volte si annulla f''(x)? a almeno una volta; b esattamente una volta; c almeno due volte; d esattamente due volte.
- 5. Siano $f(x) = \alpha x^2 + 2x$ e $g(x) = \frac{\beta}{(x+3)^2}$. Per quali valori dei parametri α e β si ha $\int_0^1 f(x) dx = \int_0^1 g(x) dx$ e f(0) = g(0)? \boxed{a} $\alpha = 2/3$, $\beta = 0$; \boxed{b} $\alpha = 0$, $\beta = 2/3$; \boxed{c} $\alpha = -3$, $\beta = 0$; \boxed{d} $\alpha = 0$, $\beta = 3$.
- 6. Sia $f:[a,b]\to \mathbf{R}$ una funzione derivabile. Se l'estremo a è un punto di minimo relativo, allora è sempre vero che: \boxed{a} $f'(a) \geq 0$; \boxed{b} f'(a) > 0; \boxed{c} $f'(a) \leq 0$; \boxed{d} f'(a) < 0.
- 7. Sia f(x) una funzione derivabile due volte con f(0) = 1, f'(0) = 1, f''(0) = 1. Il grafico del polinomio di Taylor di secondo grado e di centro $x_0 = 0$ della funzione f è



8. Sia $f(t)=-t^3+2$. Allora l'equazione della retta tangente al grafico della funzione inversa $f^{-1}(x)$ nel punto $(1,f^{-1}(1))$ è: $a y = \frac{1}{6}x + \frac{1}{2}$; $b y = \frac{1}{12}x + \frac{17}{12}$; $c y = -\frac{1}{3}x + \frac{4}{3}$; $d y = -\frac{1}{6}x + \frac{7}{6}$.

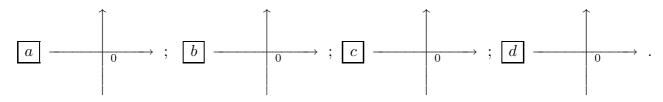
CALCOLO 1		31 agosto 2007
Cognome:	Nome:	Matricola:

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Sia $f:[a,b] \to \mathbf{R}$ una funzione derivabile. Se l'estremo b è un punto di minimo relativo, allora è sempre vero che: \boxed{a} f'(b) > 0; \boxed{b} $f'(b) \le 0$; \boxed{c} f'(b) < 0; \boxed{d} $f'(b) \ge 0$.
- 2. Per quali valori dei parametri $a \in b$ si ha che

$$\lim_{x \to 0} \left(a \frac{\sin x}{6x} + 2bx \sin \frac{1}{x} \right) = 1 \quad \text{e} \quad \lim_{x \to +\infty} \left(a \frac{\sin x}{6x} + 2bx \sin \frac{1}{x} \right) = 1?$$

$$\boxed{a} \ a=6, \, b=-1/2; \quad \boxed{b} \ a=4, \, b=-1/3; \quad \boxed{c} \ a=6, \, b=1/2; \quad \boxed{d} \ a=4, \, b=1/3.$$

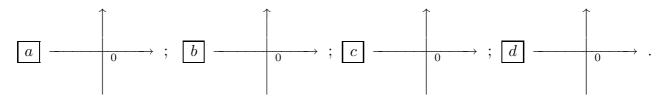
- 3. Sia f(x) polinomio di quarto grado. Se f(0) = f(2) = f(4) = f(6) = 0 (e non ci sono altri punti di azzeramento), quante volte si annulla f''(x)? a esattamente una volta; b almeno due volte; c esattamente due volte; d almeno una volta.
- 4. Sia f(x) una funzione derivabile due volte con f(0) = 1, f'(0) = 1, f''(0) = -1. Il grafico del polinomio di Taylor di secondo grado e di centro $x_0 = 0$ della funzione f è



- 5. $\lim_{x \to 0^+} (1-x)^{1/x^2} = [a] 1; [b] e; [c] +\infty; [d] 0.$
- 6. Sia x > 0. La somma della serie $\sum_{n=2}^{\infty} \left(\frac{1}{3+x}\right)^n$ è: $\boxed{a} \frac{1}{4x^2+2x}$; $\boxed{b} \frac{1}{x^2+3x+2}$; $\boxed{c} \frac{1}{x^2+5x+6}$; $\boxed{d} \frac{1}{x^2+x}$.
- 7. Sia $f(t)=-2t^3+3$. Allora l'equazione della retta tangente al grafico della funzione inversa $f^{-1}(x)$ nel punto $(1,f^{-1}(1))$ è: $a y=\frac{1}{12}x+\frac{17}{12}; b y=-\frac{1}{3}x+\frac{4}{3}; c y=-\frac{1}{6}x+\frac{7}{6}; d y=\frac{1}{6}x+\frac{1}{2}.$
- 8. Siano $f(x) = \beta x^2 2x$ e $g(x) = \frac{\alpha}{(x+2)^2}$. Per quali valori dei parametri α e β si ha $\int_0^1 f(x) \, dx = \int_0^1 g(x) \, dx$ e f(0) = g(0)? \boxed{a} $\alpha = 0$, $\beta = 2/3$; \boxed{b} $\alpha = -3$, $\beta = 0$; \boxed{c} $\alpha = 0$, $\beta = 3$; \boxed{d} $\alpha = 2/3$, $\beta = 0$.

CALCOLO 1		31 agosto 2007
Cognome:	Nome:	Matricola:

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Sia x > 0. La somma della serie $\sum_{n=2}^{\infty} \left(\frac{1}{1+x}\right)^n$ è: $a = \frac{1}{x^2+3x+2}$; $b = \frac{1}{x^2+5x+6}$; $c = \frac{1}{x^2+x}$; $a = \frac{1}{x^2+2x}$.
- 2. Sia f(x) una funzione derivabile due volte. Se f(0) = f(2) = f(4) = 0 (e non ci sono altri punti di azzeramento), quante volte si annulla f''(x)? \boxed{a} almeno due volte; \boxed{b} esattamente due volte; \boxed{c} almeno una volta; \boxed{d} esattamente una volta.
- 3. Sia f(x) una funzione derivabile due volte con f(0) = 1, f'(0) = 0, f''(0) = -1. Il grafico del polinomio di Taylor di secondo grado e di centro $x_0 = 0$ della funzione f è



- 4. Sia $f(t)=-2t^3+3$. Allora l'equazione della retta tangente al grafico della funzione inversa $f^{-1}(x)$ nel punto $(1,f^{-1}(1))$ è: $a y = -\frac{1}{3}x + \frac{4}{3}$; $b y = -\frac{1}{6}x + \frac{7}{6}$; $c y = \frac{1}{6}x + \frac{1}{2}$; $d y = \frac{1}{12}x + \frac{17}{12}$.
- 5. Sia $f:[a,b]\to \mathbf{R}$ una funzione derivabile. Se l'estremo a è un punto di massimo relativo, allora è sempre vero che: \boxed{a} $f'(a) \leq 0$; \boxed{b} f'(a) < 0; \boxed{c} $f'(a) \geq 0$; \boxed{d} f'(a) > 0.
- 6. Per quali valori dei parametri a e b si ha che

$$\lim_{x \to 0} \left(a \frac{1 - \cos x}{2x^2} + 3bx \sin \frac{1}{x} \right) = 1 \quad \text{e} \quad \lim_{x \to +\infty} \left(a \frac{1 - \cos x}{2x^2} + 3bx \sin \frac{1}{x} \right) = 1?$$

$$\boxed{a} \ a=4, \, b=-1/3; \quad \boxed{b} \ a=6, \, b=1/2; \quad \boxed{c} \ a=4, \, b=1/3; \quad \boxed{d} \ a=6, \, b=-1/2.$$

- 7. Siano $f(x) = \alpha x^2 + 2x$ e $g(x) = \frac{\beta}{(x+3)^2}$. Per quali valori dei parametri α e β si ha $\int_0^1 f(x) dx = \int_0^1 g(x) dx$ e f(0) = g(0)? \boxed{a} $\alpha = -3$, $\beta = 0$; \boxed{b} $\alpha = 0$, $\beta = 3$; \boxed{c} $\alpha = 2/3$, $\beta = 0$; \boxed{d} $\alpha = 0$, $\beta = 2/3$.
- 8. $\lim_{x \to 0^+} (1-x)^{1/x^2} = [a] e; [b] +\infty; [c] 0; [d] 1.$

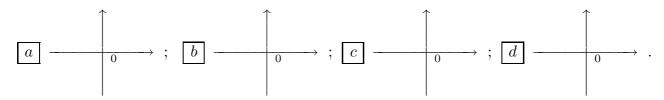
CALCOLO 1		31 agosto 2007
Cognome:	Nome:	Matricola:

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Per quali valori dei parametri a e b si ha che

$$\lim_{x \to 0} \left(a \frac{\sin x}{6x} - 2b(1 - e^{-x}) \right) = 1 \quad \text{e} \quad \lim_{x \to +\infty} \left(a \frac{\sin x}{6x} - 2b(1 - e^{-x}) \right) = 1?$$

$$\boxed{a} \quad a = 6, \ b = 1/2; \quad \boxed{b} \quad a = 4, \ b = 1/3; \quad \boxed{c} \quad a = 6, \ b = -1/2; \quad \boxed{d} \quad a = 4, \ b = -1/3.$$

2. Sia f(x) una funzione derivabile due volte con f(0) = 1, f'(0) = 1, f''(0) = 1. Il grafico del polinomio di Taylor di secondo grado e di centro $x_0 = 0$ della funzione f è



- 3. Sia $f(t)=-t^3+2$. Allora l'equazione della retta tangente al grafico della funzione inversa $f^{-1}(x)$ nel punto $(1,f^{-1}(1))$ è: $a y = -\frac{1}{6}x + \frac{7}{6}$; $b y = \frac{1}{6}x + \frac{1}{2}$; $c y = \frac{1}{12}x + \frac{17}{12}$; $d y = -\frac{1}{3}x + \frac{4}{3}$.
- 4. Siano $f(x) = x^2 \alpha x$ e $g(x) = \frac{\beta}{(x-2)^2}$. Per quali valori dei parametri α e β si ha $\int_0^1 f(x) dx = \int_0^1 g(x) dx$ e f(0) = g(0)? \boxed{a} $\alpha = 0$, $\beta = 3$; \boxed{b} $\alpha = 2/3$, $\beta = 0$; \boxed{c} $\alpha = 0$, $\beta = 2/3$; \boxed{d} $\alpha = -3$, $\beta = 0$.
- 5. Sia x > 0. La somma della serie $\sum_{n=2}^{\infty} \left(\frac{1}{1+2x}\right)^n$ è: $a = \frac{1}{x^2+5x+6}$; $b = \frac{1}{x^2+x}$; $c = \frac{1}{4x^2+2x}$; $a = \frac{1}{x^2+3x+2}$.
- 6. Sia f(x) un polinomio di terzo grado. Se f(0) = f(2) = f(4) = 0 (e non ci sono altri punti di azzeramento), quante volte si annulla f''(x)? a esattamente due volte; b almeno una volta; c esattamente una volta; d almeno due volte.
- 7. $\lim_{x \to 0^+} (1 x^2)^{1/x} = [a] + \infty; [b] 0; [c] 1; [d] e.$
- 8. Sia $f:[a,b]\to \mathbf{R}$ una funzione derivabile. Se l'estremo b è un punto di massimo relativo, allora è sempre vero che: \boxed{a} f'(b)<0; \boxed{b} $f'(b)\geq 0;$ \boxed{c} f'(b)>0; \boxed{d} $f'(b)\leq 0.$

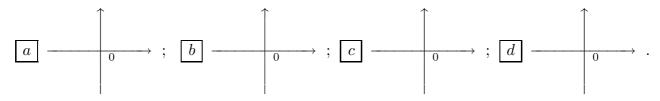
CALCOLO 1		31 agosto 2007
Cognome:	Nome:	Matricola:

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Sia f(x) una funzione derivabile due volte. Se f(0) = f(2) = f(4) = f(6) = 0 (e non ci sono altri punti di azzeramento), quante volte si annulla f''(x)? a almeno una volta; b esattamente una volta; c almeno due volte; d esattamente due volte.
- 2. Sia $f(t)=t^3-1$. Allora l'equazione della retta tangente al grafico della funzione inversa $f^{-1}(x)$ nel punto $(7,f^{-1}(7))$ è: $a y = \frac{1}{6}x + \frac{1}{2}$; $b y = \frac{1}{12}x + \frac{17}{12}$; $c y = -\frac{1}{3}x + \frac{4}{3}$; $d y = -\frac{1}{6}x + \frac{7}{6}$.
- 3. Siano $f(x) = \beta x^2 2x$ e $g(x) = \frac{\alpha}{(x+2)^2}$. Per quali valori dei parametri α e β si ha $\int_0^1 f(x) \, dx = \int_0^1 g(x) \, dx$ e f(0) = g(0)? \boxed{a} $\alpha = 2/3$, $\beta = 0$; \boxed{b} $\alpha = 0$, $\beta = 2/3$; \boxed{c} $\alpha = -3$, $\beta = 0$; \boxed{d} $\alpha = 0$, $\beta = 3$.
- 4. $\lim_{x \to 0^+} (x+1)^{1/x^2} = [a] 0; [b] 1; [c] e; [d] +\infty.$
- 5. Per quali valori dei parametri a e b si ha che

$$\lim_{x \to 0} \left(a \frac{1 - \cos x}{2x^2} - 3b(1 - e^{-x}) \right) = 1 \quad \text{e} \quad \lim_{x \to +\infty} \left(a \frac{1 - \cos x}{2x^2} - 3b(1 - e^{-x}) \right) = 1?$$

$$\boxed{a} \ a=4, \, b=1/3; \quad \boxed{b} \ a=6, \, b=-1/2; \quad \boxed{c} \ a=4, \, b=-1/3; \quad \boxed{d} \ a=6, \, b=1/2.$$

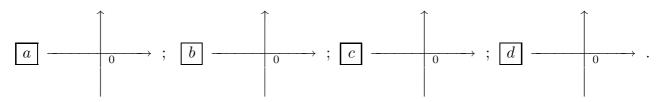
6. Sia f(x) una funzione derivabile due volte con f(0) = 1, f'(0) = 0, f''(0) = 1. Il grafico del polinomio di Taylor di secondo grado e di centro $x_0 = 0$ della funzione f è



- 7. Sia $f:[a,b] \to \mathbf{R}$ una funzione derivabile. Se l'estremo a è un punto di minimo relativo, allora è sempre vero che: \boxed{a} $f'(a) \ge 0$; \boxed{b} f'(a) > 0; \boxed{c} $f'(a) \le 0$; \boxed{d} f'(a) < 0.
- 8. Sia x > 0. La somma della serie $\sum_{n=2}^{\infty} \left(\frac{1}{2+x}\right)^n$ è: $a = \frac{1}{x^2+x}$; $b = \frac{1}{4x^2+2x}$; $c = \frac{1}{x^2+3x+2}$; $a = \frac{1}{x^2+5x+6}$.

CALCOLO 1		31 agosto 2007
Cognome:	Nome:	Matricola:

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Sia f(x) una funzione derivabile due volte con f(0) = 1, f'(0) = 0, f''(0) = -1. Il grafico del polinomio di Taylor di secondo grado e di centro $x_0 = 0$ della funzione f è



- 2. Siano $f(x) = x^2 \beta x$ e $g(x) = \frac{\alpha}{(x-3)^2}$. Per quali valori dei parametri α e β si ha $\int_0^1 f(x) \, dx = \int_0^1 g(x) \, dx$ e f(0) = g(0)? \boxed{a} $\alpha = 0$, $\beta = 2/3$; \boxed{b} $\alpha = -3$, $\beta = 0$; \boxed{c} $\alpha = 0$, $\beta = 3$; \boxed{d} $\alpha = 2/3$, $\beta = 0$.
- 3. $\lim_{x \to 0^+} (x^2 + 1)^{1/x} = [a] 1; [b] e; [c] +\infty; [d] 0.$
- 4. Sia $f:[a,b] \to \mathbf{R}$ una funzione derivabile. Se l'estremo b è un punto di minimo relativo, allora è sempre vero che: \boxed{a} f'(b) > 0; \boxed{b} $f'(b) \le 0$; \boxed{c} f'(b) < 0; \boxed{d} $f'(b) \ge 0$.
- 5. Sia f(x) polinomio di quarto grado. Se f(0) = f(2) = f(4) = f(6) = 0 (e non ci sono altri punti di azzeramento), quante volte si annulla f''(x)? a esattamente una volta; b almeno due volte; c esattamente due volte; d almeno una volta.
- 6. Sia $f(t)=2t^3+1$. Allora l'equazione della retta tangente al grafico della funzione inversa $f^{-1}(x)$ nel punto $(3,f^{-1}(3))$ è: $a y = \frac{1}{12}x + \frac{17}{12}$; $b y = -\frac{1}{3}x + \frac{4}{3}$; $c y = -\frac{1}{6}x + \frac{7}{6}$; $d y = \frac{1}{6}x + \frac{1}{2}$.
- 7. Sia x > 0. La somma della serie $\sum_{n=2}^{\infty} \left(\frac{1}{3+x}\right)^n$ è: $a = \frac{1}{4x^2+2x}$; $b = \frac{1}{x^2+3x+2}$; $c = \frac{1}{x^2+5x+6}$; $d = \frac{1}{x^2+x}$.
- 8. Per quali valori dei parametri a e b si ha che

$$\lim_{x \to 0} \left(a \frac{\sin x}{6x} + 2bx \sin \frac{1}{x} \right) = 1 \quad \text{e} \quad \lim_{x \to +\infty} \left(a \frac{\sin x}{6x} + 2bx \sin \frac{1}{x} \right) = 1?$$

$$\boxed{a} \ a = 6, \ b = -1/2; \ \boxed{b} \ a = 4, \ b = -1/3; \ \boxed{c} \ a = 6, \ b = 1/2; \ \boxed{d} \ a = 4, \ b = 1/3.$$