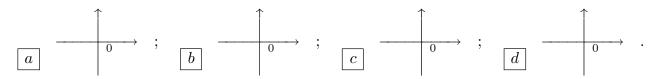
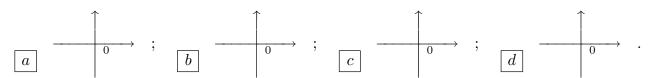
- 1. $\lim_{x \to 0^+} \frac{\sqrt{1-2x} \sqrt{1+\alpha x + x^2}}{x} = 0$ a solo per $\alpha = 2$; b solo per $\alpha = -2$; c per nessun $\alpha \in \mathbf{R}$; d per tutti gli $\alpha \in \mathbf{R}$.
- 2. Sia $f: \mathbf{R} \setminus \{0\} \to \mathbf{R}$ con f'(x) > 1 per ogni $x \in \mathbf{R} \setminus \{0\}$. Quale delle seguenti affermazioni è sempre vera? a f ha un asintoto verticale per x = 0; b $\lim_{x \to +\infty} \frac{f(x)}{\sqrt{x}}$ esiste finito; c f è invertibile; d $\lim_{x \to +\infty} f(x) = +\infty$.
- 3. Se $g(x) = \sqrt{4 + 8(f(x))^2}$ e f(0) = 2 allora $g'(0) = \boxed{a} \frac{2f'(0)}{\sqrt{1 + 2(f'(0))^2}}; \boxed{b} \frac{4}{\sqrt{1 + 2(f'(0))^2}};$ $\boxed{c} \frac{4}{3}f'(0); \boxed{d} \frac{8}{3}f'(0).$
- 4. Per quale $a \in \mathbf{R}$ la retta tangente in (a, g(a)) al grafico di $g(x) = 2^x$ passa per l'origine? \boxed{a} per $a = \frac{1}{2 \log 2}$; \boxed{b} per $a = \frac{\log 2}{2}$; \boxed{c} per $a = \frac{1}{\log 2}$; \boxed{d} per $a = \frac{2}{\log 2}$.
- 5. Quale è l'intervallo dei valori di α per i quali esiste $\lim_{x \to +\infty} x^{\alpha} \cos x$? $\boxed{a} 1 < \alpha < 1;$ $\boxed{b} \alpha \leq 0; \boxed{c} \alpha > 0; \boxed{d} \alpha < 0.$
- 6. Sia $g(x) = \sqrt{x} + x^2$ per x > 0. L'equazione della retta tangente al grafico della funzione inversa g^{-1} nel punto (2,1) è: a y = 2x + 3; b y = 2x + 3; c y = 2x + 1; d y = x.
- 7. Se f è una funzione derivabile con derivata continua, f(0) = -1 e f'(0) = 1, allora il grafico di $g(x) = \log(1 + xf(x))$ vicino all'origine è:



- 8. $\lim_{x \to 0^+} \frac{x^4 \log x + (e^{2x} 1)^2}{1 \cos 2x} = \boxed{a} \frac{1}{2}; \boxed{b} \frac{1}{8}; \boxed{c} 8; \boxed{d} 2.$
- 9. $\lim_{x \to +\infty} 2x^2 \sin(1/x) = \boxed{a} \ 1; \boxed{b} \ 2; \boxed{c} \ 0; \boxed{d} +\infty.$
- 10. Se $g(x) = \begin{cases} \beta x & \text{se } x \leq 0 \\ e^{-\frac{1}{x}} & \text{se } 0 < x \end{cases}$, per quali $\beta \in \mathbf{R}$ la funzione g è derivabile in x = 0? \boxed{a} per tutti i $\beta \in \mathbf{R}$; \boxed{b} solo per $\beta = -1$; \boxed{c} solo per $\beta = 0$; \boxed{d} solo per $\beta = 1$.

$oxed{ANALISI MATEMATICA 1 } oxed{3}$ novembre 2010

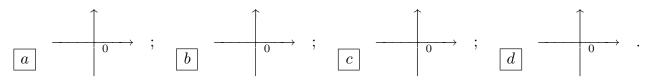
- 1. Sia $g(x) = 2\sqrt{x} + x^2$ per x > 0. L'equazione della retta tangente al grafico della funzione inversa g^{-1} nel punto (3,1) è: $a \quad 7y = 2x + 3$; $b \quad 5y = 2x + 1$; $c \quad 3y = x$; $d \quad 9y = 2x + 3$.
- 2. Se $g(x) = \sqrt{1 + 2(f(x))^2}$ e f(0) = 2 allora $g'(0) = \boxed{a} \frac{4}{\sqrt{1 + 2(f'(0))^2}};$ $\boxed{b} \frac{4}{3}f'(0);$ $\boxed{c} \frac{8}{3}f'(0);$ $\boxed{d} \frac{2f'(0)}{\sqrt{1 + 2(f'(0))^2}}.$
- 3. Se f è una funzione derivabile con derivata continua, f(0) = 1 e f'(0) = -1, allora il grafico di $g(x) = \log(2 + x f(x))$ vicino all'origine è:



- 4. $\lim_{x \to +\infty} 2x \sin(1/x^2) = \boxed{a} \ 2; \boxed{b} \ 0; \boxed{c} +\infty; \boxed{d} \ 1.$
- 5. $\lim_{x \to 0^+} \frac{\sqrt{1-2x} \sqrt{1+\alpha x + x^2}}{x^2} = 0$ a solo per $\alpha = -2$; b per nessun $\alpha \in \mathbf{R}$; c per tutti gli $\alpha \in \mathbf{R}$; d solo per $\alpha = 2$.
- 6. $\lim_{x \to 0^+} \frac{x^4 \log x + (e^x 1)^2}{1 \cos 2x} = \boxed{a} \frac{1}{8}; \boxed{b} 8; \boxed{c} 2; \boxed{d} \frac{1}{2}.$
- 7. Per quale $a \in \mathbf{R}$ la retta tangente in (a, g(a)) al grafico di $g(x) = 3^x$ passa per l'origine? \boxed{a} per $a = \frac{\log 3}{2}$; \boxed{b} per $a = \frac{1}{\log 3}$; \boxed{c} per $a = \frac{2}{\log 3}$; \boxed{d} per $a = \frac{1}{2\log 3}$.
- 9. Se $g(x) = \begin{cases} \beta x^2 & \text{se } x \leq 0 \\ e^{-\frac{1}{x}} & \text{se } 0 < x \end{cases}$, per quali $\beta \in \mathbf{R}$ la funzione g è derivabile in x = 0? \boxed{a} solo per $\beta = -1$; \boxed{b} solo per $\beta = 0$; \boxed{c} solo per $\beta = 1$; \boxed{d} per tutti i $\beta \in \mathbf{R}$.
- 10. Quale è l'intervallo dei valori di α per i quali esiste $\lim_{x \to +\infty} \frac{\cos x}{x^{\alpha}}$? $\boxed{a} \quad \alpha \geq 0; \quad \boxed{b} \quad \alpha > 0;$ $\boxed{c} \quad \alpha < 0; \quad \boxed{d} \quad -1 < \alpha < 1.$

1.
$$\lim_{x \to 0^+} \frac{x^4 \log x + (e^{2x} - 1)^2}{1 - \cos x} = \boxed{a} \ 8; \ \boxed{b} \ 2; \ \boxed{c} \ \frac{1}{2}; \ \boxed{d} \ \frac{1}{8}.$$

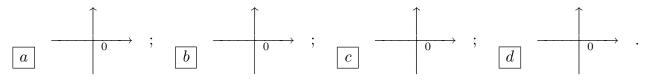
2. Se f è una funzione derivabile con derivata continua, f(0) = 1 e f'(0) = -1, allora il grafico di $g(x) = \log(2 - xf(x))$ vicino all'origine è:



- 3. Per quale $a \in \mathbf{R}$ la retta tangente in (a,g(a)) al grafico di $g(x)=2^x$ passa per l'origine? \boxed{a} per $a=\frac{1}{\log 2};$ \boxed{b} per $a=\frac{2}{\log 2};$ \boxed{c} per $a=\frac{1}{2\log 2};$ \boxed{d} per $a=\frac{\log 2}{2}.$
- 4. Se $g(x) = \begin{cases} x + \beta x & \text{se } x \leq 0 \\ e^{-\frac{1}{x}} & \text{se } 0 < x \end{cases}$, per quali $\beta \in \mathbf{R}$ la funzione g è derivabile in x = 0? per $\beta = 0$; \boxed{b} solo per $\beta = 1$; \boxed{c} per tutti i $\beta \in \mathbf{R}$; \boxed{d} solo per $\beta = -1$.
- 5. Sia $g(x) = \sqrt{x} + 2x^2$ per x > 0. L'equazione della retta tangente al grafico della funzione inversa g^{-1} nel punto (3,1) è: a 5y = 2x + 1; b 3y = x; c 9y = 2x + 3; d 7y = 2x + 3.
- 6. Sia $f: \mathbf{R} \setminus \{0\} \to \mathbf{R}$ con f'(x) > 1 per ogni $x \in \mathbf{R} \setminus \{0\}$. Quale delle seguenti affermazioni è sempre vera? a f è invertibile; b $\lim_{x \to +\infty} f(x) = +\infty$; c f ha un asintoto verticale per x = 0; $\boxed{d} \lim_{x \to +\infty} \frac{f(x)}{\sqrt{x}}$ esiste finito.
- 7. $\lim_{x \to +\infty} 2x^2 \sin(1/x^2) = \begin{bmatrix} a \end{bmatrix} 0; \quad \boxed{b} + \infty; \quad \boxed{c} \quad 1; \quad \boxed{d} \quad 2.$
- 7. $\lim_{x \to +\infty} 2x^2 \sin(1/x^2) = a \ 0; \quad b + \infty; \quad c \ 1; \quad a \ 2.$ 8. Se $g(x) = \sqrt{4 + 8(f(x))^2}$ e f(0) = 2 allora $g'(0) = a \ \frac{4}{3}f'(0); \quad b \ \frac{8}{3}f'(0);$ c $\frac{2f'(0)}{\sqrt{1+2(f'(0))^2}};$ d $\frac{4}{\sqrt{1+2(f'(0))^2}}.$
- 9. Quale è l'intervallo dei valori di α per i quali esiste $\lim_{x \to +\infty} x^{\alpha} \cos x$? $\boxed{a} \quad \alpha > 0$; $\boxed{b} \quad \alpha < 0$; $\boxed{c} -1 < \alpha < 1; \boxed{d} \quad \alpha \le 0.$
- 10. $\lim_{\substack{x \to 0^+ \\ \boxed{c}}} \frac{\sqrt{1 2x^2} \sqrt{1 + \alpha x^2 + x^4}}{x} = 0 \quad \boxed{a} \text{ per nessun } \alpha \in \mathbf{R}; \quad \boxed{b} \text{ per tutti gli } \alpha \in \mathbf{R};$

$oxed{ANALISI MATEMATICA 1 3 novembre 2010}$

- 1. Sia $f: \mathbf{R} \setminus \{0\} \to \mathbf{R}$ con f'(x) < -1 per ogni $x \in \mathbf{R} \setminus \{0\}$. Quale delle seguenti affermazioni è sempre vera? a $\lim_{x \to +\infty} f(x) = -\infty$; b f ha un asintoto verticale per x = 0; c $\lim_{x \to +\infty} \frac{f(x)}{\sqrt{x}}$ esiste finito; d f è invertibile.
- 2. Per quale $a \in \mathbf{R}$ la retta tangente in (a, g(a)) al grafico di $g(x) = 3^x$ passa per l'origine? \boxed{a} per $a = \frac{2}{\log 3}$; \boxed{b} per $a = \frac{1}{2\log 3}$; \boxed{c} per $a = \frac{\log 3}{2}$; \boxed{d} per $a = \frac{1}{\log 3}$.
- 3. $\lim_{x \to +\infty} 2x^2 \sin(1/2x^2) = \boxed{a} + \infty; \boxed{b} 1; \boxed{c} 2; \boxed{d} 0.$
- 4. Quale è l'intervallo dei valori di α per i quali esiste $\lim_{x \to +\infty} \frac{\cos x}{x^{\alpha}}$? \boxed{a} $\alpha < 0$; \boxed{b} $-1 < \alpha < 1$; \boxed{c} $\alpha \geq 0$; \boxed{d} $\alpha > 0$.
- 5. $\lim_{x \to 0^+} \frac{x^4 \log x + (e^{2x} 1)^2}{1 \cos 4x} = \boxed{a} \ 2; \boxed{b} \ \frac{1}{2}; \boxed{c} \ \frac{1}{8}; \boxed{d} \ 8.$
- 6. Se $g(x) = \sqrt{1 + 2(f(x))^2}$ e f(0) = 2 allora $g'(0) = \boxed{a} \frac{8}{3}f'(0); \boxed{b} \frac{2f'(0)}{\sqrt{1 + 2(f'(0))^2}};$ $\boxed{c} \frac{4}{\sqrt{1 + 2(f'(0))^2}}; \boxed{d} \frac{4}{3}f'(0).$
- 7. Se $g(x) = \begin{cases} x \beta x & \text{se } x \leq 0 \\ e^{-\frac{1}{x}} & \text{se } 0 < x \end{cases}$, per quali $\beta \in \mathbf{R}$ la funzione g è derivabile in x = 0? \boxed{a} solo per $\beta = 1$; \boxed{b} per tutti i $\beta \in \mathbf{R}$; \boxed{c} solo per $\beta = -1$; \boxed{d} solo per $\beta = 0$.
- 8. Se f è una funzione derivabile con derivata continua, f(0) = -1 e f'(0) = 1, allora il grafico di $g(x) = \log(1 xf(x))$ vicino all'origine è:

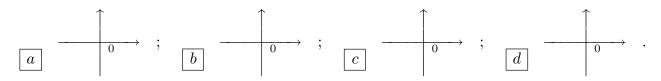


- 9. $\lim_{x \to 0^+} \frac{\sqrt{1 2x} \sqrt{1 \alpha x + x^2}}{x} = 0 \quad \boxed{a} \text{ per tutti gli } \alpha \in \mathbf{R}; \quad \boxed{b} \text{ solo per } \alpha = 2; \quad \boxed{c} \text{ solo per } \alpha = 2;$ $\boxed{d} \text{ per nessun } \alpha \in \mathbf{R}.$
- 10. Sia $g(x) = \sqrt{x} + x^3$ per x > 0. L'equazione della retta tangente al grafico della funzione inversa g^{-1} nel punto (2,1) è: $a \mid 3y = x$; $b \mid 9y = 2x + 3$; $c \mid 7y = 2x + 3$; $d \mid 5y = 2x + 1$.

1. Se
$$g(x) = \sqrt{4 + 8(f(x))^2}$$
 e $f(0) = 2$ allora $g'(0) = \boxed{a} \frac{2f'(0)}{\sqrt{1 + 2(f'(0))^2}}; \boxed{b} \frac{4}{\sqrt{1 + 2(f'(0))^2}};$ $\boxed{c} \frac{4}{3}f'(0); \boxed{d} \frac{8}{3}f'(0).$

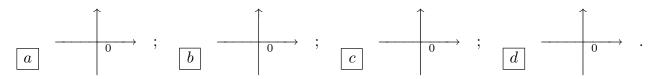
2.
$$\lim_{x \to +\infty} 2x^2 \sin(1/x) = \boxed{a} \ 1; \boxed{b} \ 2; \boxed{c} \ 0; \boxed{d} +\infty.$$

- 3. Se $g(x) = \begin{cases} \beta x & \text{se } x \leq 0 \\ e^{-\frac{1}{x}} & \text{se } 0 < x \end{cases}$, per quali $\beta \in \mathbf{R}$ la funzione g è derivabile in x = 0? tutti i $\beta \in \mathbf{R}$; \boxed{b} solo per $\beta = -1$; \boxed{c} solo per $\beta = 0$; \boxed{d} solo per $\beta = 1$.
- 4. $\lim_{x \to 0^+} \frac{\sqrt{1-2x} \sqrt{1+\alpha x + x^2}}{x} = 0$ \boxed{a} solo per $\alpha = 2$; \boxed{b} solo per $\alpha = -2$; $\boxed{nessun } \alpha \in \mathbf{R}$; \boxed{d} per tutti gli $\alpha \in \mathbf{R}$.
- 5. Sia $f: \mathbf{R} \setminus \{0\} \to \mathbf{R}$ con f'(x) > 1 per ogni $x \in \mathbf{R} \setminus \{0\}$. Quale delle seguenti affermazioni è sempre vera? a f ha un asintoto verticale per x = 0; b $\lim_{x \to +\infty} \frac{f(x)}{\sqrt{x}}$ esiste finito; c fè invertibile; $\lfloor d \rfloor \lim_{x \to +\infty} f(x) = +\infty$.
- 6. Se f è una funzione derivabile con derivata continua, f(0) = -1 e f'(0) = 1, allora il grafico di $g(x) = \log(1 - xf(x))$ vicino all'origine è:



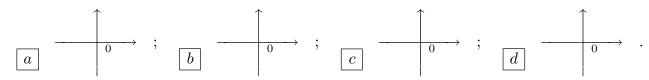
- 7. Quale è l'intervallo dei valori di α per i quali esiste $\lim_{x\to +\infty} x^{\alpha} \cos x$? $\boxed{a} -1 < \alpha < 1$; $b \mid \alpha \leq 0; \quad c \mid \alpha > 0; \quad d \mid \alpha < 0.$
- 8. Per quale $a \in \mathbf{R}$ la retta tangente in (a, g(a)) al grafico di $g(x) = 2^x$ passa per l'origine? \boxed{a} per $a = \frac{1}{2\log 2}$; \boxed{b} per $a = \frac{\log 2}{2}$; \boxed{c} per $a = \frac{1}{\log 2}$; \boxed{d} per $a = \frac{2}{\log 2}$.
- 9. Sia $g(x) = \sqrt{x} + x^2$ per x > 0. L'equazione della retta tangente al grafico della funzione inversa g^{-1} nel punto (2,1) è: $a \ 9y = 2x + 3$; $b \ 7y = 2x + 3$; $c \ 5y = 2x + 1$; $d \ 3y = x$.
- 10. $\lim_{x \to 0^+} \frac{x^4 \log x + (e^{2x} 1)^2}{1 \cos 2x} = \boxed{a} \frac{1}{2}; \boxed{b} \frac{1}{8}; \boxed{c} 8; \boxed{d} 2.$

1. Se f è una funzione derivabile con derivata continua, f(0) = -1 e f'(0) = 1, allora il grafico di $g(x) = \log(1 + xf(x))$ vicino all'origine è:



- 2. Se $g(x) = \begin{cases} \beta x^2 & \text{se } x \leq 0 \\ e^{-\frac{1}{x}} & \text{se } 0 < x \end{cases}$, per quali $\beta \in \mathbf{R}$ la funzione g è derivabile in x = 0? \boxed{a} solo per $\beta = -1$; \boxed{b} solo per $\beta = 0$; \boxed{c} solo per $\beta = 1$; \boxed{d} per tutti i $\beta \in \mathbf{R}$.
- 3. Quale è l'intervallo dei valori di α per i quali esiste $\lim_{x \to +\infty} \frac{\cos x}{x^{\alpha}}$? $\boxed{a} \quad \alpha \geq 0; \quad \boxed{b} \quad \alpha > 0;$ $\boxed{c} \quad \alpha < 0; \quad \boxed{d} \quad -1 < \alpha < 1.$
- 4. Sia $g(x) = 2\sqrt{x} + x^2$ per x > 0. L'equazione della retta tangente al grafico della funzione inversa g^{-1} nel punto (3,1) è: a 7y = 2x + 3; b 5y = 2x + 1; c 3y = x; d 9y = 2x + 3.
- 5. Se $g(x) = \sqrt{1 + 2(f(x))^2}$ e f(0) = 2 allora $g'(0) = \boxed{a} \frac{4}{\sqrt{1 + 2(f'(0))^2}}; \boxed{b} \frac{4}{3}f'(0);$ $\boxed{c} \frac{8}{3}f'(0); \boxed{d} \frac{2f'(0)}{\sqrt{1 + 2(f'(0))^2}}.$
- 6. Per quale $a \in \mathbf{R}$ la retta tangente in (a, g(a)) al grafico di $g(x) = 3^x$ passa per l'origine? \boxed{a} per $a = \frac{\log 3}{2}$; \boxed{b} per $a = \frac{1}{\log 3}$; \boxed{c} per $a = \frac{2}{\log 3}$; \boxed{d} per $a = \frac{1}{2\log 3}$.
- 7. $\lim_{x\to 0^+} \frac{\sqrt{1-2x}-\sqrt{1+\alpha x+x^2}}{x^2}=0$ [a] solo per $\alpha=-2$; [b] per nessun $\alpha\in\mathbf{R}$; [c] per tutti gli $\alpha\in\mathbf{R}$; [d] solo per $\alpha=2$.
- 8. $\lim_{x \to +\infty} 2x \sin(1/x^2) = \boxed{a} \ 2; \boxed{b} \ 0; \boxed{c} +\infty; \boxed{d} \ 1.$
- 9. $\lim_{x \to 0^+} \frac{x^4 \log x + (e^x 1)^2}{1 \cos 2x} = \boxed{a} \frac{1}{8}; \boxed{b} 8; \boxed{c} 2; \boxed{d} \frac{1}{2}.$
- 10. Sia $f: \mathbf{R} \setminus \{0\} \to \mathbf{R}$ con f'(x) < -1 per ogni $x \in \mathbf{R} \setminus \{0\}$. Quale delle seguenti affermazioni è sempre vera? a $\lim_{x \to +\infty} \frac{f(x)}{\sqrt{x}}$ esiste finito; b f è invertibile; c $\lim_{x \to +\infty} f(x) = -\infty$; d f ha un asintoto verticale per x = 0.

- 1. Per quale $a \in \mathbf{R}$ la retta tangente in (a, g(a)) al grafico di $g(x) = 2^x$ passa per l'origine? \boxed{a} per $a = \frac{1}{\log 2}$; \boxed{b} per $a = \frac{2}{\log 2}$; \boxed{c} per $a = \frac{1}{2 \log 2}$; \boxed{d} per $a = \frac{\log 2}{2}$.
- 2. Quale è l'intervallo dei valori di α per i quali esiste $\lim_{x\to +\infty} x^{\alpha} \cos x$? $\boxed{a} \quad \alpha > 0; \quad \boxed{b} \quad \alpha < 0;$ $\boxed{c} \quad -1 < \alpha < 1; \quad \boxed{d} \quad \alpha \leq 0.$
- 3. $\lim_{x \to 0^+} \frac{\sqrt{1 2x^2} \sqrt{1 + \alpha x^2 + x^4}}{x} = 0 \quad \boxed{a} \text{ per nessun } \alpha \in \mathbf{R}; \quad \boxed{b} \text{ per tutti gli } \alpha \in \mathbf{R};$ $\boxed{c} \text{ solo per } \alpha = 2; \quad \boxed{d} \text{ solo per } \alpha = -2.$
- 4. $\lim_{x \to 0^+} \frac{x^4 \log x + (e^{2x} 1)^2}{1 \cos x} = \boxed{a} \ 8; \ \boxed{b} \ 2; \ \boxed{c} \ \frac{1}{2}; \ \boxed{d} \ \frac{1}{8}.$
- 5. Se f è una funzione derivabile con derivata continua, f(0) = 1 e f'(0) = -1, allora il grafico di $g(x) = \log(2 xf(x))$ vicino all'origine è:



- 6. $\lim_{x \to +\infty} 2x^2 \sin(1/x^2) = \boxed{a} \ 0; \boxed{b} + \infty; \boxed{c} \ 1; \boxed{d} \ 2.$
- 7. Sia $g(x) = \sqrt{x} + 2x^2$ per x > 0. L'equazione della retta tangente al grafico della funzione inversa g^{-1} nel punto (3,1) è: a 5y = 2x + 1; b 3y = x; c 9y = 2x + 3; d 7y = 2x + 3.
- 8. Se $g(x) = \begin{cases} x + \beta x & \text{se } x \leq 0 \\ e^{-\frac{1}{x}} & \text{se } 0 < x \end{cases}$, per quali $\beta \in \mathbf{R}$ la funzione g è derivabile in x = 0? \boxed{a} solo per $\beta = 0$; \boxed{b} solo per $\beta = 1$; \boxed{c} per tutti i $\beta \in \mathbf{R}$; \boxed{d} solo per $\beta = -1$.
- 9. Sia $f: \mathbf{R} \setminus \{0\} \to \mathbf{R}$ con f'(x) > 1 per ogni $x \in \mathbf{R} \setminus \{0\}$. Quale delle seguenti affermazioni è sempre vera? a f è invertibile; b $\lim_{x \to +\infty} f(x) = +\infty$; c f ha un asintoto verticale per x = 0; d $\lim_{x \to +\infty} \frac{f(x)}{\sqrt{x}}$ esiste finito.
- 10. Se $g(x) = \sqrt{4 + 8(f(x))^2}$ e f(0) = 2 allora $g'(0) = \boxed{a} \frac{4}{3}f'(0);$ $\boxed{b} \frac{8}{3}f'(0);$ $\boxed{c} \frac{2f'(0)}{\sqrt{1 + 2(f'(0))^2}};$ $\boxed{d} \frac{4}{\sqrt{1 + 2(f'(0))^2}}.$

1. $\lim_{x \to +\infty} 2x^2 \sin(1/2x^2) = \boxed{a} + \infty; \boxed{b} 1; \boxed{c} 2; \boxed{d} 0.$

2. $\lim_{x\to 0^+} \frac{\sqrt{1-2x}-\sqrt{1-\alpha x+x^2}}{x} = 0$ [a] per tutti gli $\alpha \in \mathbf{R}$; [b] solo per $\alpha = 2$; [c] solo per $\alpha = -2$; [d] per nessun $\alpha \in \mathbf{R}$.

3. Sia $g(x) = \sqrt{x} + x^3$ per x > 0. L'equazione della retta tangente al grafico della funzione inversa g^{-1} nel punto (2,1) è: $a \mid 3y = x$; $b \mid 9y = 2x + 3$; $c \mid 7y = 2x + 3$; $d \mid 5y = 2x + 1$.

4. Sia $f: \mathbf{R} \setminus \{0\} \to \mathbf{R}$ con f'(x) < -1 per ogni $x \in \mathbf{R} \setminus \{0\}$. Quale delle seguenti affermazioni è sempre vera? a $\lim_{x \to +\infty} f(x) = -\infty$; b f ha un asintoto verticale per x = 0; c $\lim_{x \to +\infty} \frac{f(x)}{\sqrt{x}}$ esiste finito; d f è invertibile.

5. Per quale $a \in \mathbf{R}$ la retta tangente in (a,g(a)) al grafico di $g(x) = 3^x$ passa per l'origine? \boxed{a} per $a = \frac{2}{\log 3}$; \boxed{b} per $a = \frac{1}{2\log 3}$; \boxed{c} per $a = \frac{\log 3}{2}$; \boxed{d} per $a = \frac{1}{\log 3}$.

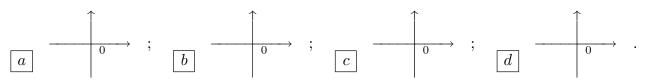
6. Se $g(x) = \begin{cases} x - \beta x & \text{se } x \leq 0 \\ e^{-\frac{1}{x}} & \text{se } 0 < x \end{cases}$, per quali $\beta \in \mathbf{R}$ la funzione g è derivabile in x = 0? \boxed{a} solo per $\beta = 1$; \boxed{b} per tutti i $\beta \in \mathbf{R}$; \boxed{c} solo per $\beta = -1$; \boxed{d} solo per $\beta = 0$.

7. $\lim_{x \to 0^+} \frac{x^4 \log x + (e^{2x} - 1)^2}{1 - \cos 4x} = \boxed{a} \ 2; \boxed{b} \ \frac{1}{2}; \boxed{c} \ \frac{1}{8}; \boxed{d} \ 8.$

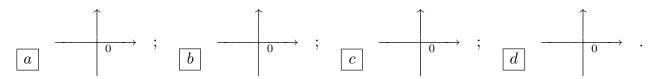
8. Quale è l'intervallo dei valori di α per i quali esiste $\lim_{x\to +\infty}\frac{\cos x}{x^{\alpha}}$? \boxed{a} $\alpha<0;$ \boxed{b} $-1<\alpha<1;$ \boxed{c} $\alpha\geq0;$ \boxed{d} $\alpha>0.$

9. Se $g(x) = \sqrt{1 + 2(f(x))^2}$ e f(0) = 2 allora $g'(0) = \boxed{a} \frac{8}{3}f'(0); \boxed{b} \frac{2f'(0)}{\sqrt{1 + 2(f'(0))^2}};$ $\boxed{c} \frac{4}{\sqrt{1 + 2(f'(0))^2}}; \boxed{d} \frac{4}{3}f'(0).$

10. Se f è una funzione derivabile con derivata continua, f(0) = 1 e f'(0) = -1, allora il grafico di $g(x) = \log(2 + xf(x))$ vicino all'origine è:



- 1. Se $g(x) = \begin{cases} \beta x^2 & \text{se } x \leq 0 \\ e^{-\frac{1}{x}} & \text{se } 0 < x \end{cases}$, per quali $\beta \in \mathbf{R}$ la funzione g è derivabile in x = 0? \boxed{a} per tutti i $\beta \in \mathbf{R}$; \boxed{b} solo per $\beta = -1$; \boxed{c} solo per $\beta = 0$; \boxed{d} solo per $\beta = 1$.
- 2. Sia $g(x) = 2\sqrt{x} + x^2$ per x > 0. L'equazione della retta tangente al grafico della funzione inversa g^{-1} nel punto (3,1) è: a 9y = 2x + 3; b 7y = 2x + 3; c 5y = 2x + 1; d 3y = x.
- 3. $\lim_{x \to 0^+} \frac{x^4 \log x + (e^x 1)^2}{1 \cos 4x} = \boxed{a} \frac{1}{2}; \boxed{b} \frac{1}{8}; \boxed{c} 8; \boxed{d} 2.$
- 4. Se $g(x) = \sqrt{4 + 8(f(x))^2}$ e f(0) = 2 allora $g'(0) = \boxed{a} \frac{2f'(0)}{\sqrt{1 + 2(f'(0))^2}}; \boxed{b} \frac{4}{\sqrt{1 + 2(f'(0))^2}};$ $\boxed{c} \frac{4}{3}f'(0); \boxed{d} \frac{8}{3}f'(0).$
- 5. $\lim_{x \to +\infty} 2x^2 \sin(1/x) = \boxed{a} \ 1; \boxed{b} \ 2; \boxed{c} \ 0; \boxed{d} +\infty.$
- 6. Quale è l'intervallo dei valori di α per i quali esiste $\lim_{x \to +\infty} x^{\alpha} \cos x$? $\boxed{a} 1 < \alpha < 1$; $\boxed{b} \alpha \leq 0$; $\boxed{c} \alpha > 0$; $\boxed{d} \alpha < 0$.
- 7. Sia $f: \mathbf{R} \setminus \{0\} \to \mathbf{R}$ con f'(x) > 1 per ogni $x \in \mathbf{R} \setminus \{0\}$. Quale delle seguenti affermazioni è sempre vera? a f ha un asintoto verticale per x = 0; b $\lim_{x \to +\infty} \frac{f(x)}{\sqrt{x}}$ esiste finito; c f è invertibile; d $\lim_{x \to +\infty} f(x) = +\infty$.
- 8. $\lim_{x \to 0^+} \frac{\sqrt{1 x^2} \sqrt{1 + \alpha x^2 + x^4}}{x} = 0 \quad \boxed{a} \text{ solo per } \alpha = 2; \quad \boxed{b} \text{ solo per } \alpha = -2; \quad \boxed{c} \text{ per nessun } \alpha \in \mathbf{R}; \quad \boxed{d} \text{ per tutti gli } \alpha \in \mathbf{R}.$
- 9. Se f è una funzione derivabile con derivata continua, f(0) = 1 e f'(0) = -1, allora il grafico di $g(x) = \log(2 + xf(x))$ vicino all'origine è:



10. Per quale $a \in \mathbf{R}$ la retta tangente in (a, g(a)) al grafico di $g(x) = 2^x$ passa per l'origine? \boxed{a} per $a = \frac{1}{2\log 2}$; \boxed{b} per $a = \frac{\log 2}{2}$; \boxed{c} per $a = \frac{1}{\log 2}$; \boxed{d} per $a = \frac{2}{\log 2}$.