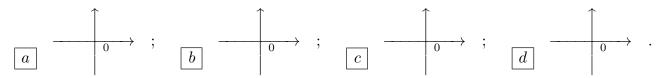
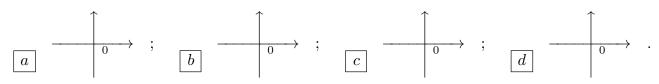
- 1. La funzione $h(x) = \arctan(x^2 + 7x 2)$ a non ha né massimo né minimo in \mathbf{R} ; b ha sia massimo che minimo in \mathbf{R} ; c ha minimo ma non massimo in \mathbf{R} ; d ha massimo ma non minimo in \mathbf{R} .
- 2. Il grafico qualitativo di $q(x) = \frac{\sin(2x^2)}{x}$ vicino all'origine è:



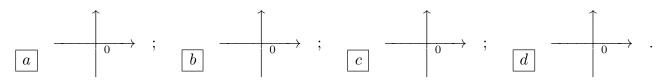
- 3. Per quali valori $\alpha, \beta \in \mathbf{R}$ la funzione $f(x) = \begin{cases} \frac{\sin(\alpha x)}{2x} & \text{se } x < 0 \\ \beta 2^x 1 & \text{se } x \ge 0 \end{cases}$ è continua e derivabile in ogni punto $x \in \mathbf{R}$? \boxed{a} $\alpha = 1, \beta = 0; \boxed{b}$ $\alpha = 0, \beta = -3; \boxed{c}$ $\alpha = -2, \beta = 0; \boxed{d}$ $\alpha = 0, \beta = -1.$
- 4. Siano $\{a_n\}, \{b_n\}$ due successioni tali che $a_n \to a \in \mathbf{R}, b_n \to b \in \mathbf{R}$. Supponiamo che -b < a < 0 < b. Allora la successione $\kappa_n = \left(\frac{a_n}{b_n}\right)^{2n}$ a diverge a $+\infty$; b diverge a $-\infty$; c converge a 0^+ , cioè per valori positivi; d converge a 0^- , cioè per valori negativi.
- 5. $\lim_{x \to 0} \frac{1 \sqrt[3]{1 + 2x^2}}{\log(1 + 4x^2)} = \boxed{a} \frac{3}{2}; \boxed{b} \frac{1}{2}; \boxed{c} \frac{1}{6}; \boxed{d} 4.$
- 6. Per quale funzione g l'equazione f(x)=g(x) è risolubile in $[0,\frac{\pi}{2}]$, qualunque sia la funzione f continua in $[0,\frac{\pi}{2}]$ e tale che $f(0)=\frac{1}{2}$ e $f(\frac{\pi}{2})=\frac{3}{2}$? \boxed{a} $g(x)=\frac{1}{\pi}x-1;$ \boxed{b} $g(x)=-\frac{1}{2}x^2;$ \boxed{c} $g(x)=\cos x;$ \boxed{d} $g(x)=\sin x.$
- 7. Sia $f(t) = \sin(2t) t$. L'equazione della retta tangente al grafico della funzione inversa $f^{-1}(x)$ in $(x_0, f^{-1}(x_0))$ per $x_0 = \frac{\pi}{2}$ è: $a y = -\frac{2}{3}x \frac{2}{3}\pi$; $b y = 2x \pi$; $c y = -\frac{1}{3}x \frac{1}{3}\pi$; $d y = x \frac{1}{2}\pi$.
- 8. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione derivabile con derivata continua. La funzione g(x) = f(|x|) + |x| è derivabile in $x_0 = 0$: a se f(0) = 0; b sempre; c se f'(0) = -1; d se f'(0) = 1.
- 9. Quali sono i valori minimo e massimo della funzione $f(x) = \frac{x+1}{2x^2}$ nell'intervallo [-3, -1]? $a \mod max = 0, \min = -\frac{1}{8}; \quad b \mod max = 1, \min = 0; \quad c \mod max = 0, \min = -1; \quad d \mod max = \frac{1}{12}, \min = 0.$
- 10. " $\forall N < 0 \exists M > 0$ tale che se $x \ge M$ allora $f(x) \ge N^2$ " significa: $\boxed{a} \lim_{x \to -\infty} f(x) = -\infty$; $\boxed{b} \lim_{x \to -\infty} f(x) = +\infty$; $\boxed{c} \lim_{x \to +\infty} f(x) = +\infty$; $\boxed{d} \lim_{x \to +\infty} f(x) = -\infty$.

- 1. Per quale funzione g l'equazione f(x)=g(x) è risolubile in $[0,\frac{\pi}{2}]$, qualunque sia la funzione f continua in $[0,\frac{\pi}{2}]$ e tale che $f(0)=\frac{1}{4}$ e $f(\frac{\pi}{2})=-\frac{1}{4}$? \boxed{a} $g(x)=-\frac{1}{2}x^2;$ \boxed{b} $g(x)=\cos x;$ \boxed{c} $g(x)=\sin x;$ \boxed{d} $g(x)=\frac{1}{\pi}x-1.$
- 2. Per quali valori $\alpha, \beta \in \mathbf{R}$ la funzione $f(x) = \begin{cases} \frac{\sin(2\beta x)}{x} & \text{se } x > 0 \\ \alpha 3^x 2 & \text{se } x \leq 0 \end{cases}$ è continua e derivabile in ogni punto $x \in \mathbf{R}$? \boxed{a} $\alpha = 0, \beta = -3; \boxed{b}$ $\alpha = -2, \beta = 0; \boxed{c}$ $\alpha = 0, \beta = -1; \boxed{d}$ $\alpha = 1, \beta = 0.$
- 3. Sia $f(t) = \cos(2t) t$. L'equazione della retta tangente al grafico della funzione inversa $f^{-1}(x)$ in $(x_0, f^{-1}(x_0))$ per $x_0 = \frac{\pi}{4}$ è: $a y = 2x \pi$; $b y = -\frac{1}{3}x \frac{1}{3}\pi$; $c y = x \frac{1}{2}\pi$; $d y = -\frac{2}{3}x \frac{2}{3}\pi$.
- 4. Quali sono i valori minimo e massimo della funzione $f(x) = \frac{2x-1}{x^2}$ nell'intervallo $\left[\frac{1}{2},2\right]$? $\boxed{a} \max = 1, \min = 0; \quad \boxed{b} \max = 0, \min = -1; \quad \boxed{c} \max = \frac{1}{12}, \min = 0; \quad \boxed{d} \max = 0, \min = -\frac{1}{8}.$
 - 5. La funzione $h(x) = \arctan(-x^2 + 14x 3)$ a ha sia massimo che minimo in \mathbf{R} ; b ha minimo ma non massimo in \mathbf{R} ; c ha massimo ma non minimo in \mathbf{R} ; d non ha né massimo né minimo in \mathbf{R} .
 - 6. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione derivabile con derivata continua. La funzione g(x) = f(|x|) |x| è derivabile in $x_0 = 0$: a sempre; b se f'(0) = -1; c se f'(0) = 1; d se f(0) = 0.
 - 7. Siano $\{a_n\}, \{b_n\}$ due successioni tali che $a_n \to a \in \mathbf{R}$, $b_n \to b \in \mathbf{R}$. Supponiamo che -b < a < 0 < b. Allora la successione $\kappa_n = \left(\frac{a_n}{b_n}\right)^{2n+1}$ a diverge a $-\infty$; b converge a 0^+ , cioè per valori positivi; c converge a 0^- , cioè per valori negativi; d diverge a $+\infty$.
 - 8. Il grafico qualitativo di $q(x) = \frac{\log(1-x^2)}{2x}$ vicino all'origine è:



- 9. " $\forall N > 0 \exists M > 0$ tale che se $x \ge M$ allora $f(x) \le -N^2$ " significa: $\boxed{a} \lim_{x \to -\infty} f(x) = +\infty$; $\boxed{b} \lim_{x \to +\infty} f(x) = +\infty$; $\boxed{c} \lim_{x \to +\infty} f(x) = -\infty$; $\boxed{d} \lim_{x \to -\infty} f(x) = -\infty$.
- 10. $\lim_{x \to 0} \frac{1 \cos(3x)}{1 e^{3x^2}} = \boxed{a} \frac{1}{2}; \boxed{b} \frac{1}{6}; \boxed{c} 4; \boxed{d} \frac{3}{2}.$

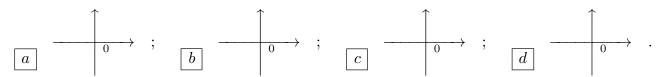
- 1. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione derivabile con derivata continua. La funzione g(x) = |x|f(|x|) è derivabile in $x_0 = 0$: \boxed{a} se f'(0) = -1; \boxed{b} se f'(0) = 1; \boxed{c} se f(0) = 0; \boxed{d} sempre.
- 2. Sia $f(t) = \sin t \frac{1}{2}t$. L'equazione della retta tangente al grafico della funzione inversa $f^{-1}(x)$ in $(x_0, f^{-1}(x_0))$ per $x_0 = \frac{\pi}{2}$ è: $a y = -\frac{1}{3}x \frac{1}{3}\pi$; $b y = x \frac{1}{2}\pi$; $c y = -\frac{2}{3}x \frac{2}{3}\pi$; $d y = 2x \pi$.
- 3. Siano $\{a_n\}, \{b_n\}$ due successioni tali che $a_n \to a \in \mathbf{R}, b_n \to b \in \mathbf{R}$. Supponiamo che a < -b < 0 < b. Allora la successione $\kappa_n = \left(\frac{a_n}{b_n}\right)^{2n}$ a converge a 0^+ , cioè per valori positivi; b converge a 0^- , cioè per valori negativi; c diverge a $+\infty$; d diverge a $-\infty$.
- 4. " $\forall N < 0 \exists M > 0$ tale che se $x \le -M^2$ allora $f(x) \le N$ " significa: $\boxed{a} \lim_{x \to +\infty} f(x) = +\infty$; $\boxed{b} \lim_{x \to +\infty} f(x) = -\infty$; $\boxed{c} \lim_{x \to -\infty} f(x) = -\infty$; $\boxed{d} \lim_{x \to -\infty} f(x) = +\infty$.
- 5. Per quale funzione g l'equazione f(x)=g(x) è risolubile in $[0,\frac{\pi}{2}]$, qualunque sia la funzione f continua in $[0,\frac{\pi}{2}]$ e tale che $f(0)=-\frac{1}{2}$ e $f(\frac{\pi}{2})=-2$? \boxed{a} $g(x)=\cos x;$ \boxed{b} $g(x)=\sin x;$ \boxed{c} $g(x)=\frac{1}{\pi}x-1;$ \boxed{d} $g(x)=-\frac{1}{2}x^2.$
- 6. Il grafico qualitativo di $q(x) = \frac{\cos(2x) 1}{x}$ vicino all'origine è:



- 7. Quali sono i valori minimo e massimo della funzione $f(x) = \frac{x-1}{3x^2}$ nell'intervallo [1, 3]? $\boxed{a} \max = 0, \min = -1; \quad \boxed{b} \max = \frac{1}{12}, \min = 0; \quad \boxed{c} \max = 0, \min = -\frac{1}{8}; \quad \boxed{d} \max = 1, \min = 0.$
 - 8. Per quali valori $\alpha, \beta \in \mathbf{R}$ la funzione $f(x) = \begin{cases} \frac{\sin(3\alpha x)}{x} & \text{se } x < 0 \\ \beta 4^x + 3 & \text{se } x \ge 0 \end{cases}$ è continua e derivabile in ogni punto $x \in \mathbf{R}$? \boxed{a} $\alpha = -2$, $\beta = 0$; \boxed{b} $\alpha = 0$, $\beta = -1$; \boxed{c} $\alpha = 1$, $\beta = 0$; \boxed{d} $\alpha = 0$, $\beta = -3$.
 - 9. $\lim_{x \to 0} \frac{1 e^{2x^2}}{\sqrt{1 + x^2} 1} = \boxed{a} \frac{1}{6}; \boxed{b} 4; \boxed{c} \frac{3}{2}; \boxed{d} \frac{1}{2}.$
- 10. La funzione $h(x) = \arctan(x^3 2x + 16)$ a ha minimo ma non massimo in \mathbf{R} ; b ha massimo ma non minimo in \mathbf{R} ; c non ha né massimo né minimo in \mathbf{R} ; d ha sia massimo che minimo in \mathbf{R} .

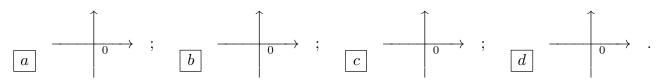
4 novembre 2015

1. Il grafico qualitativo di $q(x) = \frac{e^{x^2} - 1}{2x}$ vicino all'origine è:



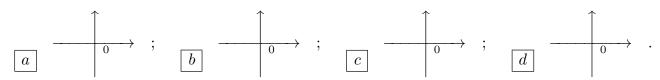
- 2. Siano $\{a_n\}, \{b_n\}$ due successioni tali che $a_n \to a \in \mathbf{R}, b_n \to b \in \mathbf{R}$. Supponiamo che a < -b < 0 < b. Allora la successione $\kappa_n = \left(\frac{a_n}{b_n}\right)^{2n+1}$ a converge a 0^- , cioè per valori negativi; b diverge a $+\infty$; c diverge a $-\infty$; d converge a 0^+ , cioè per valori positivi.
- 3. Quali sono i valori minimo e massimo della funzione $f(x) = \frac{2x+1}{x^2}$ nell'intervallo $[-2, -\frac{1}{2}]$? $\boxed{a} \max = \frac{1}{12}, \min = 0; \quad \boxed{b} \max = 0, \min = -\frac{1}{8}; \quad \boxed{c} \max = 1, \min = 0; \quad \boxed{d} \max = 0, \min = -1.$
 - 4. $\lim_{x \to 0} \frac{\log(1+x^2)}{\cos(2x) 1} = \boxed{a} 4; \boxed{b} \frac{3}{2}; \boxed{c} \frac{1}{2}; \boxed{d} \frac{1}{6}.$
 - 5. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione derivabile con derivata continua. La funzione g(x) = f(x|x|) è derivabile in $x_0 = 0$: \boxed{a} se f'(0) = 1; \boxed{b} se f(0) = 0; \boxed{c} sempre; \boxed{d} se f'(0) = -1.
 - 6. Per quali valori $\alpha, \beta \in \mathbf{R}$ la funzione $f(x) = \begin{cases} \frac{\sin(\beta x)}{3x} & \text{se } x > 0 \\ \alpha 2^{-x} 1 & \text{se } x \leq 0 \end{cases}$ è continua e derivabile in ogni punto $x \in \mathbf{R}$? \boxed{a} $\alpha = 0, \beta = -1; \boxed{b}$ $\alpha = 1, \beta = 0; \boxed{c}$ $\alpha = 0, \beta = -3; \boxed{d}$ $\alpha = -2, \beta = 0.$
 - 7. " $\forall N < 0 \exists M < 0$ tale che se $x \le M$ allora $f(x) \ge N^2$ " significa: a $\lim_{x \to +\infty} f(x) = -\infty$; b $\lim_{x \to -\infty} f(x) = -\infty$; c $\lim_{x \to -\infty} f(x) = +\infty$; d $\lim_{x \to +\infty} f(x) = +\infty$.
 - 8. Sia $f(t) = \cos t \frac{1}{2}t$. L'equazione della retta tangente al grafico della funzione inversa $f^{-1}(x)$ in $(x_0, f^{-1}(x_0))$ per $x_0 = \frac{\pi}{4}$ è: $a y = x \frac{1}{2}\pi$; $b y = -\frac{2}{3}x \frac{2}{3}\pi$; $c y = 2x \pi$; $d y = -\frac{1}{3}x \frac{1}{3}\pi$.
 - 9. La funzione $h(x) = \arctan(x/e^x)$ a ha massimo ma non minimo in \mathbf{R} ; b non ha né massimo né minimo in \mathbf{R} ; c ha sia massimo che minimo in \mathbf{R} ; d ha minimo ma non massimo in \mathbf{R} .
- 10. Per quale funzione g l'equazione f(x)=g(x) è risolubile in $\left[0,\frac{\pi}{2}\right]$, qualunque sia la funzione f continua in $\left[0,\frac{\pi}{2}\right]$ e tale che $f(0)=-\frac{3}{2}$ e $f(\frac{\pi}{2})=-1$? \boxed{a} $g(x)=\sin x;$ \boxed{b} $g(x)=\frac{1}{\pi}x-1;$ \boxed{c} $g(x)=-\frac{1}{2}x^2;$ \boxed{d} $g(x)=\cos x.$

- 1. Per quali valori $\alpha, \beta \in \mathbf{R}$ la funzione $f(x) = \begin{cases} \frac{\sin(\beta x)}{3x} & \text{se } x > 0 \\ \alpha 2^{-x} 1 & \text{se } x \le 0 \end{cases}$ è continua e derivabile in ogni punto $x \in \mathbf{R}$? \boxed{a} $\alpha = 1, \beta = 0; \boxed{b}$ $\alpha = 0, \beta = -3; \boxed{c}$ $\alpha = -2, \beta = 0; \boxed{d}$ $\alpha = 0, \beta = -1.$
- 2. Quali sono i valori minimo e massimo della funzione $f(x) = \frac{x-1}{3x^2}$ nell'intervallo [1, 3]? $a \mod max = 0, \min = -\frac{1}{8}; \quad b \mod max = 1, \min = 0; \quad c \mod max = 0, \min = -1; \quad d \mod max = \frac{1}{12}, \min = 0.$
 - 3. " $\forall N < 0 \exists M > 0$ tale che se $x \le -M^2$ allora $f(x) \le N$ " significa: $\boxed{a} \lim_{x \to -\infty} f(x) = -\infty$; $\boxed{b} \lim_{x \to -\infty} f(x) = +\infty$; $\boxed{c} \lim_{x \to +\infty} f(x) = +\infty$; $\boxed{d} \lim_{x \to +\infty} f(x) = -\infty$.
 - 4. La funzione $h(x) = \arctan(-x^2 + 14x 3)$ a non ha né massimo né minimo in \mathbf{R} ; b ha sia massimo che minimo in \mathbf{R} ; c ha minimo ma non massimo in \mathbf{R} ; d ha massimo ma non minimo in \mathbf{R} .
 - 5. Il grafico qualitativo di $q(x) = \frac{\log(1-x^2)}{2x}$ vicino all'origine è:



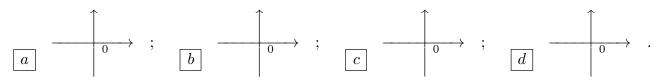
- 6. Sia $f(t) = \sin t \frac{1}{2}t$. L'equazione della retta tangente al grafico della funzione inversa $f^{-1}(x)$ in $(x_0, f^{-1}(x_0))$ per $x_0 = \frac{\pi}{2}$ è: $a y = -\frac{2}{3}x \frac{2}{3}\pi$; $b y = 2x \pi$; $c y = -\frac{1}{3}x \frac{1}{3}\pi$; $d y = x \frac{1}{2}\pi$.
- 7. $\lim_{x \to 0} \frac{1 \cos(3x)}{1 e^{3x^2}} = \boxed{a} \frac{3}{2}; \boxed{b} \frac{1}{2}; \boxed{c} \frac{1}{6}; \boxed{d} 4.$
- 8. Siano $\{a_n\}, \{b_n\}$ due successioni tali che $a_n \to a \in \mathbf{R}$, $b_n \to b \in \mathbf{R}$. Supponiamo che $-\frac{1}{4}$. Allora la successione $\kappa_n = \left(\frac{a_n}{b_n}\right)^{2n}$ a diverge a $+\infty$; b diverge a $-\infty$; c converge a 0^+ , cioè per valori positivi; d converge a 0^- , cioè per valori negativi.
- 9. Per quale funzione g l'equazione f(x)=g(x) è risolubile in $[0,\frac{\pi}{2}]$, qualunque sia la funzione f continua in $[0,\frac{\pi}{2}]$ e tale che $f(0)=\frac{1}{4}$ e $f(\frac{\pi}{2})=-\frac{1}{4}$? a $g(x)=\frac{1}{\pi}x-1$; b $g(x)=-\frac{1}{2}x^2$; c $g(x)=\cos x$; d $g(x)=\sin x$.
- 10. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione derivabile con derivata continua. La funzione g(x) = f(|x|) + |x| è derivabile in $x_0 = 0$: \boxed{a} se f(0) = 0; \boxed{b} sempre; \boxed{c} se f'(0) = -1; \boxed{d} se f'(0) = 1.

- 1. Sia $f(t) = \cos(2t) t$. L'equazione della retta tangente al grafico della funzione inversa $f^{-1}(x)$ in $(x_0, f^{-1}(x_0))$ per $x_0 = \frac{\pi}{4}$ è: $a y = 2x \pi$; $b y = -\frac{1}{3}x \frac{1}{3}\pi$; $c y = x \frac{1}{2}\pi$; $d y = -\frac{2}{3}x \frac{2}{3}\pi$.
- $2. \text{ "} \forall \ N < 0 \ \exists \ M > 0 \ \text{tale che se } x \geq M \ \text{allora} \ f(x) \geq N^2 \ \text{" significa:} \quad \boxed{a} \ \lim_{x \to -\infty} f(x) = +\infty; \\ \boxed{b} \ \lim_{x \to +\infty} f(x) = +\infty; \quad \boxed{c} \ \lim_{x \to +\infty} f(x) = -\infty; \quad \boxed{d} \ \lim_{x \to -\infty} f(x) = -\infty.$
- 3. $\lim_{x \to 0} \frac{1 e^{2x^2}}{\sqrt{1 + x^2} 1} = \boxed{a} \frac{1}{2}; \boxed{b} \frac{1}{6}; \boxed{c} 4; \boxed{d} \frac{3}{2}.$
- 4. Per quale funzione g l'equazione f(x)=g(x) è risolubile in $[0,\frac{\pi}{2}]$, qualunque sia la funzione f continua in $[0,\frac{\pi}{2}]$ e tale che $f(0)=-\frac{3}{2}$ e $f(\frac{\pi}{2})=-1$? a $g(x)=-\frac{1}{2}x^2$; b $g(x)=\cos x$; c $g(x)=\sin x$; d $g(x)=\frac{1}{\pi}x-1$.
- 5. Per quali valori $\alpha, \beta \in \mathbf{R}$ la funzione $f(x) = \begin{cases} \frac{\sin(3\alpha x)}{x} & \text{se } x < 0 \\ \beta 4^x + 3 & \text{se } x \ge 0 \end{cases}$ è continua e derivabile in ogni punto $x \in \mathbf{R}$? \boxed{a} $\alpha = 0, \beta = -3; \boxed{b}$ $\alpha = -2, \beta = 0; \boxed{c}$ $\alpha = 0, \beta = -1; \boxed{d}$ $\alpha = 1, \beta = 0.$
- 6. Siano $\{a_n\}, \{b_n\}$ due successioni tali che $a_n \to a \in \mathbf{R}, b_n \to b \in \mathbf{R}$. Supponiamo che -1. Allora la successione $\kappa_n = \left(\frac{a_n}{b_n}\right)^{2n}$ a diverge a $-\infty$; b converge a 0^+ , cioè per valori positivi; c converge a 0^- , cioè per valori negativi; d diverge a $+\infty$.
- 7. La funzione $h(x) = \arctan(x^2 + 7x 2)$ a ha sia massimo che minimo in \mathbf{R} ; b ha minimo ma non massimo in \mathbf{R} ; c ha massimo ma non minimo in \mathbf{R} ; d non ha né massimo né minimo in \mathbf{R} .
- 8. Quali sono i valori minimo e massimo della funzione $f(x) = \frac{2x-1}{x^2}$ nell'intervallo $\left[\frac{1}{2},2\right]$? $a \mod x = 1, \min = 0; \quad b \mod x = 0, \min = -1; \quad c \mod x = \frac{1}{12}, \min = 0; \quad d \mod x = 0, \min = -\frac{1}{8}.$
 - 9. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione derivabile con derivata continua. La funzione g(x) = f(x|x|) è derivabile in $x_0 = 0$: \boxed{a} sempre; \boxed{b} se f'(0) = -1; \boxed{c} se f'(0) = 1; \boxed{d} se f(0) = 0.
- 10. Il grafico qualitativo di $q(x) = \frac{e^{x^2} 1}{2x}$ vicino all'origine è:



4 novembre 2015

- 1. Siano $\{a_n\}, \{b_n\}$ due successioni tali che $a_n \to a \in \mathbf{R}, b_n \to b \in \mathbf{R}$. Supponiamo che $\frac{3}{2}$. Allora la successione $\kappa_n = \left(\frac{a_n}{b_n}\right)^{2n+1}$ a converge a 0^+ , cioè per valori positivi; b converge a 0^- , cioè per valori negativi; c diverge a $+\infty$; d diverge a $-\infty$.
- 2. $\lim_{x \to 0} \frac{1 \sqrt[3]{1 + 2x^2}}{\log(1 + 4x^2)} = \boxed{a} \frac{1}{6}; \boxed{b} 4; \boxed{c} \frac{3}{2}; \boxed{d} \frac{1}{2}.$
- 3. La funzione $h(x) = \arctan(x/e^x)$ a ha minimo ma non massimo in \mathbf{R} ; b ha massimo ma non minimo in \mathbf{R} ; c non ha né massimo né minimo in \mathbf{R} ; d ha sia massimo che minimo in \mathbf{R} .
- 4. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione derivabile con derivata continua. La funzione g(x) = |x|f(|x|) è derivabile in $x_0 = 0$: \boxed{a} se f'(0) = -1; \boxed{b} se f'(0) = 1; \boxed{c} se f(0) = 0; \boxed{d} sempre.
- 5. Sia $f(t) = \sin t \frac{1}{2}t$. L'equazione della retta tangente al grafico della funzione inversa $f^{-1}(x)$ in $(x_0, f^{-1}(x_0))$ per $x_0 = \frac{\pi}{2}$ è: $a y = -\frac{1}{3}x \frac{1}{3}\pi$; $b y = x \frac{1}{2}\pi$; $c y = -\frac{2}{3}x \frac{2}{3}\pi$; $d y = 2x \pi$.
- 6. Quali sono i valori minimo e massimo della funzione $f(x) = \frac{2x-1}{x^2}$ nell'intervallo $\left[\frac{1}{2}, 2\right]$? $\boxed{a} \max = 0, \min = -1; \quad \boxed{b} \max = \frac{1}{12}, \min = 0; \quad \boxed{c} \max = 0, \min = -\frac{1}{8}; \quad \boxed{d} \max = 1, \min = 0.$
 - 7. Per quale funzione g l'equazione f(x)=g(x) è risolubile in $[0,\frac{\pi}{2}]$, qualunque sia la funzione f continua in $[0,\frac{\pi}{2}]$ e tale che $f(0)=\frac{1}{2}$ e $f(\frac{\pi}{2})=\frac{3}{2}$? a $g(x)=\cos x$; b $g(x)=\sin x$; c $g(x)=\frac{1}{\pi}x-1$; d $g(x)=-\frac{1}{2}x^2$.
 - 8. " $\forall N < 0 \exists M < 0$ tale che se $x \leq M$ allora $f(x) \geq N^2$ " significa: a $\lim_{x \to +\infty} f(x) = +\infty$; b $\lim_{x \to +\infty} f(x) = -\infty$; c $\lim_{x \to -\infty} f(x) = -\infty$; d $\lim_{x \to -\infty} f(x) = +\infty$.
 - 9. Il grafico qualitativo di $q(x) = \frac{\cos(2x) 1}{x}$ vicino all'origine è:

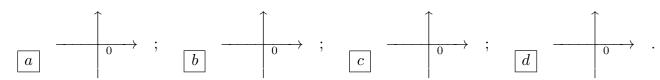


10. Per quali valori $\alpha, \beta \in \mathbf{R}$ la funzione $f(x) = \begin{cases} \frac{\sin(3\alpha x)}{x} & \text{se } x < 0 \\ \beta 4^x + 3 & \text{se } x \ge 0 \end{cases}$ è continua e derivabile in ogni punto $x \in \mathbf{R}$? \boxed{a} $\alpha = -2$, $\beta = 0$; \boxed{b} $\alpha = 0$, $\beta = -1$; \boxed{c} $\alpha = 1$, $\beta = 0$; \boxed{d} $\alpha = 0$, $\beta = -3$.

4 novembre 2015

1. Quali sono i valori minimo e massimo della funzione $f(x) = \frac{x+1}{2x^2}$ nell'intervallo [-3,-1]? \boxed{a} max $= \frac{1}{12}$, min = 0; \boxed{b} max = 0, min $= -\frac{1}{8}$; \boxed{c} max = 1, min = 0; \boxed{d} max = 0, min = -1.

- 2. La funzione $h(x) = \arctan(x^3 2x + 16)$ a ha massimo ma non minimo in \mathbf{R} ; b non ha né massimo né minimo in \mathbf{R} ; c ha sia massimo che minimo in \mathbf{R} ; d ha minimo ma non massimo in \mathbf{R} .
- 3. Per quale funzione g l'equazione f(x)=g(x) è risolubile in $[0,\frac{\pi}{2}]$, qualunque sia la funzione f continua in $[0,\frac{\pi}{2}]$ e tale che $f(0)=-\frac{1}{2}$ e $f(\frac{\pi}{2})=-2$? a $g(x)=\sin x$; b $g(x)=\frac{1}{\pi}x-1$; c $g(x)=-\frac{1}{2}x^2$; d $g(x)=\cos x$.
- 4. Il grafico qualitativo di $q(x) = \frac{\sin(2x^2)}{x}$ vicino all'origine è:

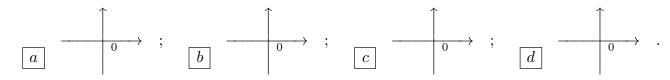


- 5. Siano $\{a_n\}, \{b_n\}$ due successioni tali che $a_n \to a \in \mathbf{R}$, $b_n \to b \in \mathbf{R}$. Supponiamo che -2. Allora la successione $\kappa_n = \left(\frac{a_n}{b_n}\right)^{2n+1}$ a converge a 0^- , cioè per valori negativi; b diverge a $+\infty$; c diverge a $-\infty$; d converge a 0^+ , cioè per valori positivi.
- 6. " $\forall N > 0 \exists M > 0$ tale che se $x \ge M$ allora $f(x) \le -N^2$ " significa: $\boxed{a} \lim_{x \to +\infty} f(x) = -\infty$; $\boxed{b} \lim_{x \to -\infty} f(x) = -\infty$; $\boxed{c} \lim_{x \to -\infty} f(x) = +\infty$; $\boxed{d} \lim_{x \to +\infty} f(x) = +\infty$.
- 7. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione derivabile con derivata continua. La funzione g(x) = f(|x|) |x| è derivabile in $x_0 = 0$: \boxed{a} se f'(0) = 1; \boxed{b} se f(0) = 0; \boxed{c} sempre; \boxed{d} se f'(0) = -1.
- 8. $\lim_{x \to 0} \frac{\log(1+x^2)}{\cos(2x) 1} = \boxed{a} 4; \boxed{b} \frac{3}{2}; \boxed{c} \frac{1}{2}; \boxed{d} \frac{1}{6}.$
- 9. Per quali valori $\alpha, \beta \in \mathbf{R}$ la funzione $f(x) = \begin{cases} \frac{\sin(2\beta x)}{x} & \text{se } x > 0 \\ \alpha 3^x 2 & \text{se } x \leq 0 \end{cases}$ è continua e derivabile in ogni punto $x \in \mathbf{R}$? \boxed{a} $\alpha = 0, \beta = -1; \boxed{b}$ $\alpha = 1, \beta = 0; \boxed{c}$ $\alpha = 0, \beta = -3; \boxed{d}$ $\alpha = -2, \beta = 0.$
- 10. Sia $f(t) = \cos(2t) t$. L'equazione della retta tangente al grafico della funzione inversa $f^{-1}(x)$ in $(x_0, f^{-1}(x_0))$ per $x_0 = \frac{\pi}{4}$ è: $a y = x \frac{1}{2}\pi$; $b y = -\frac{2}{3}x \frac{2}{3}\pi$; $c y = 2x \pi$; $d y = -\frac{1}{3}x \frac{1}{3}\pi$.

4 novembre 2015

1. " $\forall N < 0 \exists M > 0$ tale che se $x \ge M$ allora $f(x) \ge N^2$ " significa: $\boxed{a} \lim_{x \to -\infty} f(x) = -\infty;$ $\boxed{b} \lim_{x \to +\infty} f(x) = +\infty;$ $\boxed{c} \lim_{x \to +\infty} f(x) = +\infty;$ $\boxed{d} \lim_{x \to +\infty} f(x) = -\infty.$

- 2. Per quale funzione g l'equazione f(x)=g(x) è risolubile in $[0,\frac{\pi}{2}]$, qualunque sia la funzione f continua in $[0,\frac{\pi}{2}]$ e tale che $f(0)=-\frac{1}{2}$ e $f(\frac{\pi}{2})=-2$? a $g(x)=\frac{1}{\pi}x-1$; b $g(x)=-\frac{1}{2}x^2$; c $g(x)=\cos x$; d $g(x)=\sin x$.
- 3. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione derivabile con derivata continua. La funzione g(x) = |x|f(|x|) è derivabile in $x_0 = 0$: a se f(0) = 0; b sempre; c se f'(0) = -1; d se f'(0) = 1.
- 4. Per quali valori $\alpha, \beta \in \mathbf{R}$ la funzione $f(x) = \begin{cases} \frac{\sin(2\beta x)}{x} & \text{se } x > 0 \\ \alpha 3^x 2 & \text{se } x \leq 0 \end{cases}$ è continua e derivabile in ogni punto $x \in \mathbf{R}$? \boxed{a} $\alpha = 1, \beta = 0; \boxed{b}$ $\alpha = 0, \beta = -3; \boxed{c}$ $\alpha = -2, \beta = 0; \boxed{d}$ $\alpha = 0, \beta = -1.$
- 5. Quali sono i valori minimo e massimo della funzione $f(x) = \frac{2x+1}{x^2}$ nell'intervallo $[-2, -\frac{1}{2}]$? $a \mod \max = 0, \min = -\frac{1}{8}; \quad b \mod \infty = 1, \min = 0; \quad c \mod \infty = 0, \min = -1; \quad d \mod \infty = \frac{1}{12}, \min = 0.$
 - 6. $\lim_{x \to 0} \frac{1 \cos(3x)}{1 e^{3x^2}} = \boxed{a} \frac{3}{2}; \boxed{b} \frac{1}{2}; \boxed{c} \frac{1}{6}; \boxed{d} 4.$
 - 7. Il grafico qualitativo di $q(x) = \frac{e^{x^2} 1}{2x}$ vicino all'origine è:

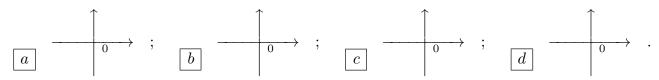


- 8. La funzione $h(x) = \arctan(x^3 2x + 16)$ a non ha né massimo né minimo in \mathbf{R} ; b ha sia massimo che minimo in \mathbf{R} ; c ha minimo ma non massimo in \mathbf{R} ; d ha massimo ma non minimo in \mathbf{R} .
- 9. Sia $f(t) = \sin(2t) t$. L'equazione della retta tangente al grafico della funzione inversa $f^{-1}(x)$ in $(x_0, f^{-1}(x_0))$ per $x_0 = \frac{\pi}{2}$ è: $a y = -\frac{2}{3}x \frac{2}{3}\pi$; $b y = 2x \pi$; $c y = -\frac{1}{3}x \frac{1}{3}\pi$; $d y = x \frac{1}{2}\pi$.
- 10. Siano $\{a_n\}, \{b_n\}$ due successioni tali che $a_n \to a \in \mathbf{R}$, $b_n \to b \in \mathbf{R}$. Supponiamo che -2. Allora la successione $\kappa_n = \left(\frac{a_n}{b_n}\right)^{2n+1}$ a diverge a $+\infty$; b diverge a $-\infty$; c converge a 0^+ , cioè per valori positivi; d converge a 0^- , cioè per valori negativi.

ANALISI MATEMATICA 1 4 novembre 2015

1.
$$\lim_{x \to 0} \frac{1 - e^{2x^2}}{\sqrt{1 + x^2 - 1}} = \boxed{a} - \frac{1}{2}; \boxed{b} - \frac{1}{6}; \boxed{c} - 4; \boxed{d} - \frac{3}{2}.$$

- 2. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione derivabile con derivata continua. La funzione g(x) = f(x|x|) è $a \text{ sempre}; \quad b \text{ se } f'(0) = -1; \quad c \text{ se } f'(0) = 1; \quad d \text{ se } f(0) = 0.$ derivabile in $x_0 = 0$:
- 3. Il grafico qualitativo di $q(x) = \frac{\cos(2x) 1}{x}$ vicino all'origine è:



- 4. Sia $f(t) = \cos t \frac{1}{2}t$. L'equazione della retta tangente al grafico della funzione inversa $f^{-1}(x)$ in $(x_0, f^{-1}(x_0))$ per $x_0 = \frac{\pi}{4}$ è: $a y = 2x - \pi$; $b y = -\frac{1}{3}x - \frac{1}{3}\pi$; $c y = x - \frac{1}{2}\pi$; $d y = -\frac{2}{2}x - \frac{2}{2}\pi.$
- 5. " $\forall N < 0 \exists M < 0 \text{ tale che se } x \leq M \text{ allora } f(x) \geq N^2$ " significa: $a \lim_{x \to -\infty} f(x) = +\infty$;
- 6. La funzione $h(x) = \arctan(x/e^x) \mid a \mid$ ha sia massimo che minimo in \mathbf{R} ; $\mid b \mid$ ha minimo ma non massimo in \mathbf{R} ; | c | ha massimo ma non minimo in \mathbf{R} ; | d | non ha né massimo né minimo in \mathbf{R} .
- 7. Per quali valori $\alpha, \beta \in \mathbf{R}$ la funzione $f(x) = \begin{cases} \frac{\sin(\alpha x)}{2x} & \text{se } x < 0 \\ \beta 2^x 1 & \text{se } x \ge 0 \end{cases}$ è continua e derivabile in ogni punto $x \in \mathbf{R}$? \boxed{a} $\alpha = 0, \beta = -3; \boxed{b}$ $\alpha = -2, \beta = 0; \boxed{c}$ $\alpha = 0, \beta = -1; \boxed{d}$ $\alpha = 1, \beta = 0; \boxed{c}$ $\beta = 0.$
- 8. Per quale funzione g l'equazione f(x)=g(x) è risolubile in $[0,\frac{\pi}{2}]$, qualunque sia la funzione fcontinua in $[0, \frac{\pi}{2}]$ e tale che $f(0) = \frac{1}{4}$ e $f(\frac{\pi}{2}) = -\frac{1}{4}$? $a g(x) = -\frac{1}{2}x^2$; $b g(x) = \cos x$; $c g(x) = \sin x; d g(x) = \frac{1}{\pi}x - 1.$
- 9. Siano $\{a_n\}, \{b_n\}$ due successioni tali che $a_n \to a \in \mathbf{R}, b_n \to b \in \mathbf{R}$. Supponiamo che $-\frac{1}{4}$. Allora la successione $\kappa_n = \left(\frac{a_n}{b_n}\right)^{2n+1}$ a diverge a $-\infty$; b converge a 0^+ , cioè per valori positivi; c | converge a 0^- , cioè per valori negativi; | d | diverge a $+\infty$.
- 10. Quali sono i valori minimo e massimo della funzione $f(x) = \frac{x+1}{2x^2}$ nell'intervallo [-3, -1]? $a \mod x = 1, \min = 0; \quad b \mod x = 0, \min = -1; \quad c \mod x = \frac{1}{12}, \min = 0; \quad d \mod x = 0,$ $\min = -\frac{1}{8}$