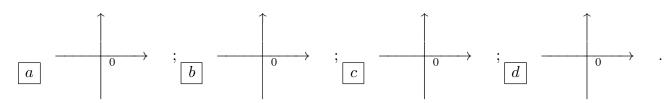
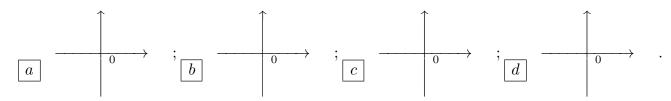
ANALISI MATEMATICA 1 - Quinto appello		6 settembre 2018
Cognome:	Nome:	Matricola:
Corso di laurea:		


- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. L'insieme dei numeri complessi z per cui valgono le relazioni |z-1| > 0, Re $z + \operatorname{Im} z < 0$ è: a un punto; b un segmento; c un semipiano; d la metà di un disco (cioè la metà di un cerchio "pieno").
- 2. Quale delle seguenti figure rappresenta qualitativamente per x vicino a 0 il grafico della soluzione y(x) del problema di Cauchy $\begin{cases} y' = x^3 y^3 \\ y(0) = 1 \end{cases}$?

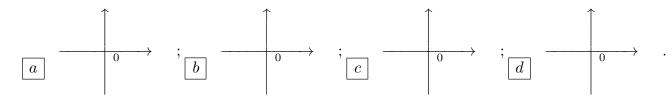
- 3. L'equazione della retta tangente al grafico della funzione $f(x) = \frac{e^{x+2}}{x+2}$ nel punto (0, f(0)) è: $a \quad y = \frac{2e^3}{9}x + \frac{e^3}{3}; \quad b \quad y = -\frac{4}{9e^3}x \frac{1}{3e^3}; \quad c \quad y = \frac{e^2}{4}x + \frac{e^2}{2}; \quad d \quad y = -\frac{3}{4e^2}x \frac{1}{2e^2}.$
- 4. L'insieme dei valori $\alpha > 0$ per cui l'integrale improprio $\int_1^{+\infty} \left(e^{(x^{-2\alpha})} 1 \right) \sin\left(x^{-\frac{1}{2}} \right) dx$ è convergente è: $a \mid \alpha > \frac{1}{3}$; $b \mid \alpha > \frac{2}{9}$; $c \mid \alpha > \frac{1}{4}$; $d \mid \alpha > \frac{1}{6}$.
- 5. $\lim_{x \to +\infty} \frac{x x \log x}{\log x x} = \boxed{a} \ 0; \ \boxed{b} \ 1; \ \boxed{c} + \infty; \ \boxed{d} \infty.$
- 6. Quali sono il valore di massimo assoluto e il valore di minimo assoluto della funzione $g(x)=2x^4-x^2$ nell'intervallo [-1,2]? $a \max g=\frac{9}{4}, \min g=-4;$ $b \max g=\frac{1}{12}, \min g=-44;$ $c \max g=28, \min g=-\frac{1}{8};$ $d \max g=8, \min g=-1.$
- 7. Siano $y_1(x)$ e $y_2(x)$ due soluzioni dell'equazione differenziale $y' + (\sin^2 x)y = x^2 \cos x$. Allora $2y_1(x) + y_2(x)$ è soluzione di $y' + (\sin^2 x)y = a x^2 \cos x$; $b 2x^2 \cos x$; $c 3x^2 \cos x$; $d -x^2 \cos x$.
- 8. Data la funzione $f: \mathbf{R} \to \mathbf{R}$, sia $A = \{y \in \mathbf{R} \mid \text{esiste } x \in \mathbf{R} \text{ tale che } f(x) = y\}$ (cioè A è l'immagine di f). Quale delle seguenti affermazioni non può mai avverarsi? a A non ha estremo superiore finito ; b A ha massimo ma non ha estremo superiore finito ; c A non ha massimo ; d A ha estremo superiore finito ma non ha massimo .

ANALISI MATEMATICA 1 - Quinto appello		6 settembre 2018
Cognome:	Nome:	Matricola:
Corso di laurea:		


- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Quali sono il valore di massimo assoluto e il valore di minimo assoluto della funzione $g(x)=x^4-2x^2$ nell'intervallo [-2,2]? $a \max g=\frac{1}{12}, \min g=-44; b \max g=28, \min g=-\frac{1}{8}; c \max g=8, \min g=-1; d \max g=\frac{9}{4}, \min g=-4.$
- 2. L'equazione della retta tangente al grafico della funzione $f(x) = \frac{e^{x-2}}{x-2}$ nel punto (0, f(0)) è: $a \quad y = -\frac{4}{9e^3}x \frac{1}{3e^3}; \quad b \quad y = \frac{e^2}{4}x + \frac{e^2}{2}; \quad c \quad y = -\frac{3}{4e^2}x \frac{1}{2e^2}; \quad d \quad y = \frac{2e^3}{9}x + \frac{e^3}{3}.$
- 3. L'insieme dei valori $\alpha>0$ per cui l'integrale improprio $\int_1^{+\infty}\left(e^{(x^{-3\alpha})}-1\right)\sin\left(x^{-\frac{1}{2}}\right)dx$ è convergente è: \boxed{a} $\alpha>\frac{2}{9}$; \boxed{b} $\alpha>\frac{1}{4}$; \boxed{c} $\alpha>\frac{1}{6}$; \boxed{d} $\alpha>\frac{1}{3}$.
- 4. Siano $y_1(x)$ e $y_2(x)$ due soluzioni dell'equazione differenziale $y' + (\sin^2 x)y = x^2 \cos x$. Allora $y_1(x) 2y_2(x)$ è soluzione di $y' + (\sin^2 x)y = a 2x^2 \cos x$; $b 3x^2 \cos x$; $c -x^2 \cos x$; $d x^2 \cos x$.
- 5. L'insieme dei numeri complessi z per cui valgono le relazioni |z-1| < 1, Re $z + \operatorname{Im} z > 1$ è: a un segmento; b un semipiano; c la metà di un disco (cioè la metà di un cerchio "pieno"); d un punto.
- 6. Quale delle seguenti figure rappresenta qualitativamente per x vicino a 0 il grafico della soluzione y(x) del problema di Cauchy $\begin{cases} y' = y^3 + x^3 \\ y(0) = 1 \end{cases}$?

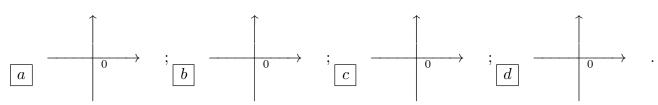
- 7. Data la funzione $f: \mathbf{R} \to \mathbf{R}$, sia $A = \{y \in \mathbf{R} \mid \text{esiste } x \in \mathbf{R} \text{ tale che } f(x) = y\}$ (cioè A è l'immagine di f). Quale delle seguenti affermazioni non può mai avverarsi? \boxed{a} A ha minimo ma non ha estremo inferiore finito; \boxed{b} A non ha minimo; \boxed{c} A ha estremo inferiore finito ma non ha minimo; \boxed{d} A non ha estremo inferiore finito.
- 8. $\lim_{x \to +\infty} \frac{x xe^x}{e^x x} = \boxed{a} \ 1; \ \boxed{b} + \infty; \ \boxed{c} \infty; \ \boxed{d} \ 0.$

ANALISI MATEMATICA 1 - Quinto appello		6 settembre 2018
Cognome:	Nome:	Matricola:
Corso di laurea:		

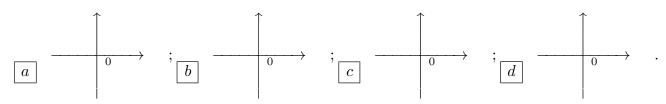

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Quale delle seguenti figure rappresenta qualitativamente per x vicino a 0 il grafico della soluzione y(x) del problema di Cauchy $\begin{cases} y' = y^3 2x^3 \\ y(0) = 1 \end{cases}$?

- 2. L'insieme dei valori $\alpha > 0$ per cui l'integrale improprio $\int_{1}^{+\infty} \left(e^{(x^{-2\alpha})} 1\right) \sin\left(x^{-\frac{1}{3}}\right) dx$ è convergente è: $a \quad \alpha > \frac{1}{4}$; $b \quad \alpha > \frac{1}{6}$; $c \quad \alpha > \frac{1}{3}$; $d \quad \alpha > \frac{2}{9}$.
- 3. Siano $y_1(x)$ e $y_2(x)$ due soluzioni dell'equazione differenziale $y' + (\sin^2 x)y = x^2 \cos x$. Allora $2y_1(x) y_2(x)$ è soluzione di $y' + (\sin^2 x)y = \begin{bmatrix} a \end{bmatrix} 3x^2 \cos x$; $\begin{bmatrix} b \end{bmatrix} -x^2 \cos x$; $\begin{bmatrix} c \end{bmatrix} x^2 \cos x$; $\begin{bmatrix} d \end{bmatrix} 2x^2 \cos x$.
- 4. Data la funzione $f: \mathbf{R} \to \mathbf{R}$, sia $A = \{y \in \mathbf{R} \mid \text{esiste } x \in \mathbf{R} \text{ tale che } f(x) = y\}$ (cioè A è l'immagine di f). Quale delle seguenti affermazioni non può mai avverarsi? \boxed{a} A non ha massimo ; \boxed{b} A ha estremo superiore finito ma non ha massimo ; \boxed{c} A non ha estremo superiore finito ; \boxed{d} A ha massimo ma non ha estremo superiore finito .
- 5. Quali sono il valore di massimo assoluto e il valore di minimo assoluto della funzione $g(x)=3x^2-x^4$ nell'intervallo [-2,2]? $a \max g=28, \min g=-\frac{1}{8}; b \max g=8, \min g=-1;$ $a \max g=\frac{9}{4}, \min g=-4; d \max g=\frac{1}{12}, \min g=-44.$
- 6. L'equazione della retta tangente al grafico della funzione $f(x) = \frac{e^{x+3}}{x+3}$ nel punto (0, f(0)) è: $a \quad y = \frac{e^2}{4}x + \frac{e^2}{2}$; $b \quad y = -\frac{3}{4e^2}x \frac{1}{2e^2}$; $c \quad y = \frac{2e^3}{9}x + \frac{e^3}{3}$; $d \quad y = -\frac{4}{9e^3}x \frac{1}{3e^3}$.
- 7. $\lim_{x \to +\infty} \frac{\log x x}{x x \log x} = \boxed{a} + \infty; \boxed{b} \infty; \boxed{c} \ 0; \boxed{d} \ 1.$
- 8. L'insieme dei numeri complessi z per cui valgono le relazioni $|z+1| \le 0$, Re $z \operatorname{Im} z < 2$ è: a un semipiano; b la metà di un disco (cioè la metà di un cerchio "pieno"); c un punto; d un segmento.

ANALISI MATEMATICA 1 - Quinto appello		6 settembre 2018
Cognome:	Nome:	Matricola:
Corso di laurea:		

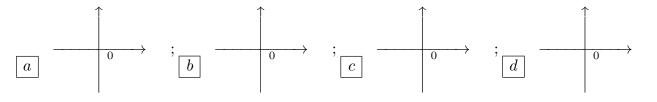

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. L'equazione della retta tangente al grafico della funzione $f(x) = \frac{e^{x-3}}{x-3}$ nel punto (0, f(0)) è: $\boxed{a} \ y = -\frac{3}{4e^2}x \frac{1}{2e^2}; \quad \boxed{b} \ y = \frac{2e^3}{9}x + \frac{e^3}{3}; \quad \boxed{c} \ y = -\frac{4}{9e^3}x \frac{1}{3e^3}; \quad \boxed{d} \ y = \frac{e^2}{4}x + \frac{e^2}{2}.$
- 2. Siano $y_1(x)$ e $y_2(x)$ due soluzioni dell'equazione differenziale $y' + (\sin^2 x)y = x^2 \cos x$. Allora $y_1(x) + y_2(x)$ è soluzione di $y' + (\sin^2 x)y = a x^2 \cos x$; $b x^2 \cos x$; $c 2x^2 \cos x$; $d 3x^2 \cos x$.
- 3. Data la funzione $f: \mathbf{R} \to \mathbf{R}$, sia $A = \{y \in \mathbf{R} \mid \text{esiste } x \in \mathbf{R} \text{ tale che } f(x) = y\}$ (cioè A è l'immagine di f). Quale delle seguenti affermazioni non può mai avverarsi? \boxed{a} A ha estremo inferiore finito ma non ha minimo ; \boxed{b} A non ha estremo inferiore finito ; \boxed{c} A ha minimo ma non ha estremo inferiore finito ; \boxed{d} A non ha minimo .
- 4. $\lim_{x \to +\infty} \frac{e^x x}{x xe^x} = \boxed{a} -\infty; \boxed{b} \ 0; \boxed{c} \ 1; \boxed{d} +\infty.$
- 5. Quale delle seguenti figure rappresenta qualitativamente per x vicino a 0 il grafico della soluzione y(x) del problema di Cauchy $\begin{cases} y'=-y^3-x^3\\ y(0)=1 \end{cases}$?

- 6. L'insieme dei valori $\alpha>0$ per cui l'integrale improprio $\int_{1}^{+\infty}\left(e^{(x^{-3\alpha})}-1\right)\sin\left(x^{-\frac{1}{3}}\right)dx$ è convergente è: \boxed{a} $\alpha>\frac{1}{6};$ \boxed{b} $\alpha>\frac{1}{3};$ \boxed{c} $\alpha>\frac{2}{9};$ \boxed{d} $\alpha>\frac{1}{4}.$
- 7. L'insieme dei numeri complessi z per cui valgono le relazioni |z+1| < 1, Re $z \operatorname{Im} z = -1$ è: a la metà di un disco (cioè la metà di un cerchio "pieno"); b un punto; c un segmento; d un semipiano.
- 8. Quali sono il valore di massimo assoluto e il valore di minimo assoluto della funzione $g(x)=x^2-3x^4$ nell'intervallo [-1,2]? $a \max g=8, \min g=-1; b \max g=\frac{9}{4}, \min g=-4;$ $c \max g=\frac{1}{12}, \min g=-44; d \max g=28, \min g=-\frac{1}{8}.$


ANALISI MATEMATICA 1 - Quinto appello		6 settembre 2018
Cognome:	Nome:	Matricola:
Corso di laurea:		

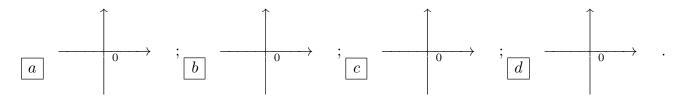
- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. L'insieme dei valori $\alpha > 0$ per cui l'integrale improprio $\int_1^{+\infty} \left(e^{(x^{-3\alpha})} 1 \right) \sin\left(x^{-\frac{1}{2}} \right) dx$ è convergente è: $a \mid \alpha > \frac{1}{3}$; $b \mid \alpha > \frac{2}{9}$; $c \mid \alpha > \frac{1}{4}$; $d \mid \alpha > \frac{1}{6}$.
- 2. Data la funzione $f: \mathbf{R} \to \mathbf{R}$, sia $A = \{y \in \mathbf{R} \mid \text{esiste } x \in \mathbf{R} \text{ tale che } f(x) = y\}$ (cioè A è l'immagine di f). Quale delle seguenti affermazioni non può mai avverarsi? \boxed{a} A non ha estremo superiore finito; \boxed{b} A ha massimo ma non ha estremo superiore finito; \boxed{c} A non ha massimo; \boxed{d} A ha estremo superiore finito ma non ha massimo.
- 3. $\lim_{x \to +\infty} \frac{e^x x}{x xe^x} = \boxed{a} \ 0; \ \boxed{b} \ 1; \ \boxed{c} + \infty; \ \boxed{d} \infty.$
- 4. L'insieme dei numeri complessi z per cui valgono le relazioni $|z+1| \le 0$, Re $z \operatorname{Im} z < 2$ è: a un punto; b un segmento; c un semipiano; d la metà di un disco (cioè la metà di un cerchio "pieno").
- 5. L'equazione della retta tangente al grafico della funzione $f(x) = \frac{e^{x-2}}{x-2}$ nel punto (0, f(0)) è: $a \quad y = \frac{2e^3}{9}x + \frac{e^3}{3}; \quad b \quad y = -\frac{4}{9e^3}x \frac{1}{3e^3}; \quad c \quad y = \frac{e^2}{4}x + \frac{e^2}{2}; \quad d \quad y = -\frac{3}{4e^2}x \frac{1}{2e^2}.$
- 6. Siano $y_1(x)$ e $y_2(x)$ due soluzioni dell'equazione differenziale $y' + (\sin^2 x)y = x^2 \cos x$. Allora $2y_1(x) + y_2(x)$ è soluzione di $y' + (\sin^2 x)y = a x^2 \cos x$; $b 2x^2 \cos x$; $c 3x^2 \cos x$; $d -x^2 \cos x$.
- 7. Quali sono il valore di massimo assoluto e il valore di minimo assoluto della funzione $g(x)=x^4-2x^2$ nell'intervallo [-2,2]? $a \max g=\frac{9}{4}, \min g=-4;$ $b \max g=\frac{1}{12}, \min g=-44;$ $c \max g=28, \min g=-\frac{1}{8};$ $d \max g=8, \min g=-1.$
- 8. Quale delle seguenti figure rappresenta qualitativamente per x vicino a 0 il grafico della soluzione y(x) del problema di Cauchy $\begin{cases} y' = x^3 y^3 \\ y(0) = 1 \end{cases}$?

ANALISI MATEMATICA 1 - Quinto appello		6 settembre 2018
Cognome:	Nome:	Matricola:
Corso di laurea:		


- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Siano $y_1(x)$ e $y_2(x)$ due soluzioni dell'equazione differenziale $y' + (\sin^2 x)y = x^2 \cos x$. Allora $2y_1(x) y_2(x)$ è soluzione di $y' + (\sin^2 x)y = a 2x^2 \cos x$; $b 3x^2 \cos x$; $c -x^2 \cos x$; $d x^2 \cos x$.
- $2. \lim_{x \to +\infty} \frac{x x \log x}{\log x x} = \boxed{a} \ 1; \ \boxed{b} \ +\infty; \ \boxed{c} \ -\infty; \ \boxed{d} \ 0.$
- 3. L'insieme dei numeri complessi z per cui valgono le relazioni |z-1| < 1, Re $z + \operatorname{Im} z > 1$ è: a un segmento; b un semipiano; c la metà di un disco (cioè la metà di un cerchio "pieno"); d un punto.
- 4. Quali sono il valore di massimo assoluto e il valore di minimo assoluto della funzione $g(x)=3x^2-x^4$ nell'intervallo [-2,2]? $a \max g=\frac{1}{12}, \min g=-44; b \max g=28, \min g=-\frac{1}{8}; c \max g=8, \min g=-1; d \max g=\frac{9}{4}, \min g=-4.$
- 5. L'insieme dei valori $\alpha > 0$ per cui l'integrale improprio $\int_{1}^{+\infty} \left(e^{(x^{-3\alpha})} 1\right) \sin\left(x^{-\frac{1}{3}}\right) dx$ è convergente è: $a \quad \alpha > \frac{2}{9}$; $b \quad \alpha > \frac{1}{4}$; $c \quad \alpha > \frac{1}{6}$; $d \quad \alpha > \frac{1}{3}$.
- 6. Data la funzione $f: \mathbf{R} \to \mathbf{R}$, sia $A = \{y \in \mathbf{R} \mid \text{esiste } x \in \mathbf{R} \text{ tale che } f(x) = y\}$ (cioè A è l'immagine di f). Quale delle seguenti affermazioni non può mai avverarsi? \boxed{a} A ha minimo ma non ha estremo inferiore finito ; \boxed{b} A non ha minimo ; \boxed{c} A ha estremo inferiore finito ma non ha minimo ; \boxed{d} A non ha estremo inferiore finito .
- 7. Quale delle seguenti figure rappresenta qualitativamente per x vicino a 0 il grafico della soluzione y(x) del problema di Cauchy $\begin{cases} y' = y^3 2x^3 \\ y(0) = 1 \end{cases}$?

8. L'equazione della retta tangente al grafico della funzione $f(x) = \frac{e^{x+2}}{x+2}$ nel punto (0, f(0)) è: $\boxed{a} \ y = -\frac{4}{9e^3}x - \frac{1}{3e^3}; \quad \boxed{b} \ y = \frac{e^2}{4}x + \frac{e^2}{2}; \quad \boxed{c} \ y = -\frac{3}{4e^2}x - \frac{1}{2e^2}; \quad \boxed{d} \ y = \frac{2e^3}{9}x + \frac{e^3}{3}.$

ANALISI MATEMATICA 1 - Quinto appello		6 settembre 2018
Cognome:	Nome:	Matricola:
Corso di laurea:		


- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Data la funzione $f: \mathbf{R} \to \mathbf{R}$, sia $A = \{y \in \mathbf{R} \mid \text{esiste } x \in \mathbf{R} \text{ tale che } f(x) = y\}$ (cioè A è l'immagine di f). Quale delle seguenti affermazioni non può mai avverarsi? \boxed{a} A non ha massimo; \boxed{b} A ha estremo superiore finito ma non ha massimo; \boxed{c} A non ha estremo superiore finito; \boxed{d} A ha massimo ma non ha estremo superiore finito.
- 2. L'insieme dei numeri complessi z per cui valgono le relazioni |z+1| < 1, Re $z \operatorname{Im} z = -1$ è: a un semipiano; b la metà di un disco (cioè la metà di un cerchio "pieno"); c un punto; d un segmento.
- 3. Quali sono il valore di massimo assoluto e il valore di minimo assoluto della funzione $g(x)=x^2-3x^4$ nell'intervallo [-1,2]? $a \max g=28, \min g=-\frac{1}{8}; b \max g=8, \min g=-1;$ $c \max g=\frac{9}{4}, \min g=-4; d \max g=\frac{1}{12}, \min g=-44.$
- 4. Quale delle seguenti figure rappresenta qualitativamente per x vicino a 0 il grafico della soluzione y(x) del problema di Cauchy $\begin{cases} y' = y^3 + x^3 \\ y(0) = 1 \end{cases}$?

- 5. Siano $y_1(x)$ e $y_2(x)$ due soluzioni dell'equazione differenziale $y' + (\sin^2 x)y = x^2 \cos x$. Allora $y_1(x) + y_2(x)$ è soluzione di $y' + (\sin^2 x)y = a 3x^2 \cos x$; $b x^2 \cos x$; $c x^2 \cos x$; $d 2x^2 \cos x$.
- 6. $\lim_{x \to +\infty} \frac{\log x x}{x x \log x} = \boxed{a} + \infty; \boxed{b} \infty; \boxed{c} \ 0; \boxed{d} \ 1.$
- 7. L'equazione della retta tangente al grafico della funzione $f(x) = \frac{e^{x+3}}{x+3}$ nel punto (0, f(0)) è: $a \quad y = \frac{e^2}{4}x + \frac{e^2}{2}; \quad b \quad y = -\frac{3}{4e^2}x \frac{1}{2e^2}; \quad c \quad y = \frac{2e^3}{9}x + \frac{e^3}{3}; \quad d \quad y = -\frac{4}{9e^3}x \frac{1}{3e^3}.$
- 8. L'insieme dei valori $\alpha > 0$ per cui l'integrale improprio $\int_{1}^{+\infty} \left(e^{(x^{-2\alpha})} 1 \right) \sin \left(x^{-\frac{1}{3}} \right) dx \ e$ convergente è: $\boxed{a} \ \alpha > \frac{1}{4}; \ \boxed{b} \ \alpha > \frac{1}{6}; \ \boxed{c} \ \alpha > \frac{1}{3}; \ \boxed{d} \ \alpha > \frac{2}{9}.$

ANALISI MATEMATICA 1 - Quinto appello		6 settembre 2018
Cognome:	Nome:	Matricola:
Corso di laurea:		

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- $1. \lim_{x \to +\infty} \frac{x xe^x}{e^x x} = \boxed{a} -\infty; \boxed{b} \ 0; \boxed{c} \ 1; \boxed{d} +\infty.$
- 2. Quali sono il valore di massimo assoluto e il valore di minimo assoluto della funzione $g(x)=2x^4-x^2$ nell'intervallo [-1,2]? $a \max g=8, \min g=-1; b \max g=\frac{9}{4}, \min g=-4;$ $c \max g=\frac{1}{12}, \min g=-44; d \max g=28, \min g=-\frac{1}{8}.$
- 3. Quale delle seguenti figure rappresenta qualitativamente per x vicino a 0 il grafico della soluzione y(x) del problema di Cauchy $\begin{cases} y' = -y^3 x^3 \\ y(0) = 1 \end{cases}$?

- 4. L'equazione della retta tangente al grafico della funzione $f(x) = \frac{e^{x-3}}{x-3}$ nel punto (0, f(0)) è: $\boxed{a} \ y = -\frac{3}{4e^2}x \frac{1}{2e^2}; \quad \boxed{b} \ y = \frac{2e^3}{9}x + \frac{e^3}{3}; \quad \boxed{c} \ y = -\frac{4}{9e^3}x \frac{1}{3e^3}; \quad \boxed{d} \ y = \frac{e^2}{4}x + \frac{e^2}{2}.$
- 5. Data la funzione $f: \mathbf{R} \to \mathbf{R}$, sia $A = \{y \in \mathbf{R} \mid \text{esiste } x \in \mathbf{R} \text{ tale che } f(x) = y\}$ (cioè A è l'immagine di f). Quale delle seguenti affermazioni non può mai avverarsi? \boxed{a} A ha estremo inferiore finito ma non ha minimo ; \boxed{b} A non ha estremo inferiore finito ; \boxed{c} A ha minimo ma non ha estremo inferiore finito ; \boxed{d} A non ha minimo .
- 6. L'insieme dei numeri complessi z per cui valgono le relazioni |z-1| > 0, Re $z + \operatorname{Im} z < 0$ è: a la metà di un disco (cioè la metà di un cerchio "pieno"); b un punto; c un segmento; d un semipiano.
- 7. L'insieme dei valori $\alpha > 0$ per cui l'integrale improprio $\int_1^{+\infty} \left(e^{(x^{-2\alpha})} 1\right) \sin\left(x^{-\frac{1}{2}}\right) dx$ è convergente è: $a \quad \alpha > \frac{1}{6}$; $b \quad \alpha > \frac{1}{3}$; $c \quad \alpha > \frac{2}{9}$; $d \quad \alpha > \frac{1}{4}$.
- 8. Siano $y_1(x)$ e $y_2(x)$ due soluzioni dell'equazione differenziale $y' + (\sin^2 x)y = x^2 \cos x$. Allora $y_1(x) 2y_2(x)$ è soluzione di $y' + (\sin^2 x)y = a x^2 \cos x$; $b x^2 \cos x$; $c 2x^2 \cos x$; $d 3x^2 \cos x$.