COGNOME	NOME	Matr.
Ar	nalisi Matematica II (Amb 6 febbraio 2013	o-Civ)
(i) si determini una funzione abbia le derivate incrociate u	il campo vettoriale $\vec{v}(x,y) = (2xy + x)$ f(x) > 0 in modo tale che il campo v iguali [è utile ricordare che $(\log f)' = 0$ prici garantiscono che $f\vec{v}$ sia conserva un potenziale di $f\vec{v}$.	vettoriale $f\vec{v}$ sia irrotazionale, cioè $f'/f];$
Risultati		

Calcoli:

Esercizio 2 (8 punti) Sia data la funzione f(x,y) = y(2-x)(2y-x).

- (i) Si determinino i suoi punti stazionari, e si dica di che tipo sono;
- (ii) si determinino il suo massimo assoluto e il suo minimo assoluto nell'insieme

$$B = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le 2, 0 \le y \le 1\}.$$

_		
T. 1		
Risultati:		

Calcoli:

Esercizio 3 (8 punti) Dato il campo vettoriale $\vec{v}(x,y,z) = (x-z,y^2-1,z+x^2),$

(i) si calcoli l'integrale della divergenza di \vec{v} in K, ove

$$K = \{(x, y, z) \in \mathbf{R}^3 \mid 0 \le z \le y - x^2, 0 \le y \le 1\};$$

- (ii) si enunci sinteticamente il teorema della divergenza;
- (iii) si verifichi la sua validità calcolando direttamente il flusso uscente di \vec{v} attraverso il bordo di K.

Risultato:		

Calcoli:

Esercizio 4 (7 punti) Si effettuano 3 estrazioni senza reimmissione da un salvadanaio contenente 3					
monete da 1 euro e $n-3$ monete da 2 euro (con $n \ge 4$). Si indichi con X_j il guadagno ricavato nella					
j—esima estrazione, $j = 1, 2, 3$. Determinare la probabilità che la terza moneta estratta sia da un					
euro, ovvero $P(X_3 = 1)$. Dire se tale probabilità coincide con $P(X_2 = 1)$. Calcolare la speranza di					
$X_2 + X_3$.					
Risultati:					
Calcoli:					