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The mechanics of the flowing blood interacts with the wall
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Neurodegenerative diseases

• Multiple Sclerosis (MS)

• Transient Global Amnesia (TGA)

• Transient Monocular Blindnes (TMB)

• Meniere’s Disease (MD)

• Idiopathic Parkinson’s Disease (IPD)
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Multiple Sclerosis. what is it?

Multiple Sclerosis (MS) is a chronic demyelinating and degenerative disease
of the central nervous system. The exact cause remains unknown, but

most evidence favours an autoimmune mechanism (Laupacis et al. 2011)

Taken from M A Rhodes. CCSVI as the cause of multiple sclerosis. Mc Farland Health Topics (2011)

• Damage to the protective layer of axons, called myelin
• Axons cannot longer transmit signals efficiently
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What happens to patients with MS?

• cognitive impairment

• muscle spasticity

• mobility, coordination, balance problems

• speech and visual problems

• chronic fatigue

• acute or chronic pain

• bladder and bowel problems

Patients with MS have a shorter-than-normal life span
as a consequence of the medical condition

suicide is fairly common, as a result of depression
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Other facts about Multiple Sclerosis

• MS is the most common cause of neurological disabilities in young
adults (20-50)

• Europe has about 400 thousand MS patients (60 thousand in Italy)

• USA has about 400 thousand MS patients

• The world has about 2.5 million MS patients

• Causes of the disease are unknown

• There is no cure at present

• Treatments on offer are simply aimed at modifying the course of the
disease: Disease Modifying Treatment
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Two main theories for MS:

• The autoimmune theory: the immune system, for a yet unknown
reason, attacks self cells. This is currently the dominant theory.
Recall definition of MS from Laupacis et al. (2011):

Multiple Sclerosis is a chronic demyelinating and degenerative disease of the central nervous system. The exact cause
remains unknown, but most evidence favours an autoimmune mechanism

• The vascular theory: anomalous venous flow in the brain has
important role to play

• Charcot (1860), in post-mortem studies observed that lesions in CNS
are invariably linked to veins

• See also Tracey Putnam (1935); Fog (1965); Schelling (1986)

• Adams (1988) established without any doubts that MS plaques are
linked to veins

• Zamboni (2009) has resurfaced the vascular theory of MS

• Common ground: the autoimmune theory accepts that T cells
escape from blood stream through the Blood-Brain-Barrier (BBB)

8 / 62



Adams’s evidence for vascular link to MS

Streaks of blood (arrows) encircling wall of vein (V) at the centre of MS
plaque in brain (Adams, 1988).
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Zamboni’s discovery: CCSVI

Zamboni et al. (2009) discovered that MS patients had vessel
malformations in the extra cranial venous system

causing anomalous venous return from brain
(Chronic Cerebro Spinal Venous Insufficiency, or CCSVI)

Left: Main neck veins. Right: MRI images from Haacke et al. (2012).
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Recent research (Haacke et al. 2012)

Fig. 1 of Haacke et al. (2012).
(a) RIJV is malformed (long arrow); right sigmoid sinus drains into vertebral plexuses (short arrow).

(b) both IJVs are truncated (long arrows); sigmoid sinuses drains into vertebral plexuses (short arrows).

(c) LIJV is truncated (long arrow); thin connection between midneck level and inferior jugular bulb near confluence with
subclavian vein (short arrow).

(d) both IJVs show continuous enhancement from sigmoid sinus through upper neck level but are truncated near midneck level
(long arrows).
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Hypothesised sequence of events leading to MS:

1 Extracranial venous malformations (eg stenoses)

2 Chronic venous hypertension

3 Separation of tight junctions and disruption of blood-brain-barrier
(BBB)

4 Filtration of colloids through the exposed porous basement
membranes

5 Disruption of axon internal transport systems, leading to their
disintegration

6 Normal inflammatory processes would follow, probably
indistinguishable from those associated with autoimmune disease
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Other venous-related pathologies
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Transient Global Amnesia (TGA)

Transient Global Amnesia (TGA) is a sudden, temporary episode of
memory loss. A TGA episode is rare and usually short-lived

Chung et al. (2006) hypothesize that retrograde venous hypertension plays
a role in the pathogenesis of TGA. They found:

• Retrograde intracranial venous flow caused by left brachiocephalic vein
occlusion was found only in patients with TGA and not in controls

• Compression of the vein is caused the sternum and the aorta during
regular breathing

• TGA patients may have an underlying impairment of cerebral venous
outflow that increases their vulnerability to TGA attack

C. Chung, H. Hsu, and A. Chao. Detection of intracranial venous reflux in patients of transient global amnesia. Neurology,
66:18731877, 2006
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Transient Monocular Blindness (TMB)

TMB attacks may occur during straining activities that impede cerebral
venous return. Disturbance of cerebral and orbital venous circulation may

be involved in TMB

Chung et al. (2010) found:

• The frequency of jugular venous reflux (JVR) is higher in patients
with transient monocular blindness (TMB)

• They hypothesize that JVR influences ocular venous outflow, and
resulting disturbances in cerebral and ocular venous circulation might
be a cause of TMB

• In the case-control study, TMB patients had a wider retinal venule
diameter, especially TMB patients with JVR

• Conclusion: JVR associated with TMB impedes ocular venous
outflow, and the subsequent disturbances in ocular venous circulation
may be a cause of TMB

C. Chung, H. Hsu, A. Chao, C. Cheng, S. Lin, and H. Hu. Jugular venous reflux affects ocular venous system in transient
monocular blindness. Cerebrovascular Diseases, 29:122129, 2010
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Meniere’s disease (MD)

MD is a disorder of the inner ear that causes vertigo, fluctuating hearing
loss and tinnitus. The cause is unknown and there is no cure

Filipo et al (2013) found:

• A high prevalence of IJVs stenosis with haemodynamic changes
(increased velocity or absence of flow) was observed (66.7 vs 33.3%)

• The results obtained showed a vascular pattern of cerebrospinal
venous system present in patients affected by definite Meniere

• This vascular impairment affects the vascular areas more directly
involved in the venous drainage of the inner ear. Thus venous stasis
may be considered a further pathogenetic mechanism for development
of Meniere’s disease.

Filipo R, Ciciarello F, Attanasio G, Mancini P, Covelli E, Agati L, Fedele F, Viccaro M. Chronic cerebrospinal venous
insufficiency in patients with Mnire’s disease. Eur Arch Otorhinolaryngol. 2013 Dec 7
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Idiopathic Parkinson’s Disease (IPD)

Idiopathic Parkinson’s disease (IPD) remains one of those
neurodegenerative diseases for which the cause remains unknown

Liu et al. (2014) found:

• Many clinically diagnosed cases of IPD are associated with
cerebrovascular disease and white matter hyperintensities (WMHs)

• The authors investigated the presence of transverse sinus and
extracranial venous abnormalities in IPD patients and their
relationship with brain WMHs

• Venous abnormalities (categories 1, 2, and 3) were seen in 57% of
IPD subjects and in only 30% of controls

• A major fraction of IPD patients appear to have abnormal venous
anatomy and flow on the left side of the brain and neck and that the
flow abnormalities appear to correlate with WMH volume

M. Liu, H. Xu, Y. Wang, Y. Zhong, S. Xia, D. Utriainen, T. Wang, and E. M. Haacke. Patterns of chronic venous insufficiency
in the dural sinuses and extracranial draining veins and their relationship with white matter hyperintensities for patients with
Parkinsons disease. Journal of Vascular Surgery, pages na, 2014.
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Modelling: aims and challenges
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1 To develop a global, close-loop mathematical model for the entire
human circulation

• Use the model to understand the link between venous anomalies and
Multiple Sclerosis, Idiopathic Parkinson’s Disease and Meniere’s
Disease.

• Understanding the dominant bio-physical mechanisms may contribute
to explain the pathologies and may help in the design of potential cures

2 Develop a model for transport across the vessel wall (capillaries)

3 Couple haemodynamics to transport across vessel walls
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The sought model for the human circulation

• Global, closed loop (BCs avoided)

• Model components to include:

• the heart,
• the arterial system,
• the microvasculature,
• the venous system,
• the cerebral spinal fluid and
• the pulmonary circulation

• Multiscale approach: 0D+1D+3D
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Equations
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Typical blood vessel configuration

• The full problem for the human body is computationally intractable
• Interaction of fluid mechanics and solid mechanics (FSI)
• Simplifications are needed. Multi-scale approach: 0D+1D+3D
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One-dimensional models

Physical principles of mass and momentum balance give:
∂tA+ ∂xq = 0,

∂tq + ∂x

(
α̂
q2

A

)
+
A

ρ
∂xp = −Ru.

(1)

The unknowns are:

• A(x, t): cross-sectional area of vessel;

• q(x, t): flow;

• p(x, t): internal pressure;

Parameters:

• R: viscous resistance of the flow per unit length of the tube;

• ρ: density of blood;

• α̂: parameter associated to assumed velocity profile.
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A closure condition is required: the tube law.

p(x, t) = pe(x, t) +K(x)φ(A(x, t), x) , (2)

with

φ(A, x) = αm − αn ; α =
A

A0
. (3)

A0(x) is the vessel cross-sectional area at a reference configuration.

K(x) =
E(x)

12(1− ν2)

(
h0(x)

R0(x)

)3

. (4)

h0(x): vessel thickness; R0(x): radius at equilibrium; E(x): Young’s
modulus; ν: Poisson ratio.
There are mathematical (and physical) restrictions on m and n.

• For arteries one takes m = 1/2, n = 0.

• For collapsible vessels, such as veins, one takes m ≈ 10, n = −3/2.
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Tube law: pressure behaviour
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cross-sectional area, for arteries and veins.
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∂xp = ψA∂xA+ ψK∂xK + ψA0∂xA0 + ∂xpe(x, t) . (5)

The complete system reads

∂tA+ ∂x(uA) = 0 ,

∂t(uA) + ∂x(Au2) + A
ρ ψA∂xA =

−A
ρ ψK∂xK −

A
ρ ψA0∂xA0 − ∂xpe(x, t)−Ru


(6)

with
ψA = ∂ψ

∂A = K
A [mαm − nαn] ,

ψK = ∂ψ
∂K = αm − αn ,

ψA0 = ∂ψ
∂A0

= − K
A0

[mαm − nαn] .


(7)
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Variable material properties

Treat parameters of the problem as new unknowns (LeFloch, 1989). Add
trivial PDEs:

∂tK(x) = 0 ,

∂tA0(x) = 0 ,

∂tpe(x) = F (x, t) .

 (8)

Add advection equations for transport of species concentration φk(x, t)

∂tφk + u∂xφk = 0 . (9)

The resulting, enlarged system in quasi-linear form reads

∂tQ + A(Q)∂xQ = S(Q) , (10)
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where

Q =



q1

q2

q3

q4

q5

q6

 ≡


A
Au
K
A0

pe
φk

 , S(Q) =



s1

s2

s3

s4

s5

s6

 ≡


0
−Ru

0
0

F (x, t)
0

 , (11)

A(Q) =



0 1 0 0 0 0
A
ρ ψA − u

2 2u A
ρ ψK

A
ρ ψA0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−uφ φ 0 0 0 u

 . (12)
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Eigenstructure

• Eigenvalues

λ1 = u− c , λ2 ≡ λ3 ≡ λ4 = 0 , λ5 = u , λ6 = u+ c , (13)

where

c =

√
A

ρ
ψA =

√
K

ρ
[mαm − nαn] (14)

is the wave speed. All eigenvalues are real provided:

mαm ≥ nαn . (15)

• Eigenvectors. Complete
• Charactaeristic fields. The λ1 and λ6 characteristic fields are

genuinely non-linear provided

m(m+ 2)αm 6= n(n+ 2)αn (16)

and the λi-characteristic fields, for i = 2, . . . , 5, are linearly
degenerate.

Toro E F and Siviglia A. Flow in collapsible tubes with discontinuous mechanical properties: mathematical model and exact
solutions. Communications in Computational Physics. Vol. 13, Number 2, pp 361-385, Feb. 2013.
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Difficulties

For a simple version of the model, the Riemann problem

∂tQ + A(Q)∂xQ = 0 , x ∈ R , t > 0 ,

Q(x, 0) =

{
QL if x < 0 ,
QR if x > 0 .

 (17)

has been studied in detail by Han et al. (2014). They found:

• The enlarged system is resonant

• The Riemann problem (17) has multiple solutions

• All solutions have been determined, for both the sub and supercritical
cases.

Han E, Warneche G, Toro E F and Siviglia A. On Riemann solutions to weakly hyperbolic systems: Part 1. Modelling subcritical
flows in arteries. SIAM Journal of Mathematical Analysis (Submitted, 2014)

Han E, Warneche G, Toro E F and Siviglia A. On Riemann solutions to weakly hyperbolic systems: Part 2. Modelling
supercritical flows in arteries. SIAM Journal of Mathematical Analysis. (Submitted, 2014)
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Numerical methods: ADER
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The ADER approach: first published results

E F Toro, R C Millington and L A M Nejad. Towards Very High Order
Godunov Schemes. In Godunov Methods: Theory and Applications.

Edited Review. E. F. Toro (Editor), pages 905-937. Kluwer
Academic/Plenum Publishers, 2001.

E F Toro and V A Titarev. Solution of the generalised Riemann problem
for advection-reaction equations. Proceedings of the Royal Society of

London. Series A. Vol. 458, pages 271-281, 2002.

T Schwartzkop, C D Munz and E F Toro. ADER: High-order approach
for linear hyperbolic systems in 2D. Journal of Scientific Computing. Vol.

17, pages 231-240, 2002.

ADER:

Arbitrary Accuracy DErivative Riemann problem
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Collaborators in ADER research:

Mauricio Caceres, Richard Millington, Thomas Schwarzkopff, Claus-Dieter
Munz, Vladimir Titarev, Yoko Takakura, Michael Dumbser, Martin Kaeser,
Armin Iske, Cedric Enaux, Cristobal Castro, Giovanni Russo, Carlos Pares,

Manuel Castro, Arturo Hidalgo, Gianluca Vignoli, Giovanna Grosso,
Matteo Antuono, Alberto Canestrelli, Annunziato Siviglia, Gino

Montecinos, Lucas Mueller, Junbo Cheng, Jiang Song, Claus Goetz
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Why high accuracy ?

Test problem for linear acoustics.

Collaborators: M. Dumbser, T. Schwartzkopff, and C.-D. Munz. Arbitrary high order finite volume schemes for linear wave
propagation. Book Series Notes on Numerical Fluid mechanics and Multidisciplinary Design. Springer Berlin / Heidelberg ISSN

1612-2909, Volume 91/2006
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ADER numerical flux and numerical source

Consider the 1D case with source terms:

∂tQ(x, t) + F(Q(x, t)) = S(Q(x, t)) (18)

Finite volume explicit, one-step, fully discrete scheme reads:

Qn+1
i = Qn

i −
∆t

∆x
(Fi+ 1

2
− Fi− 1

2
) + ∆tSi (19)

where

Numerical flux: Fi+ 1
2
≈ 1

∆t

∫ ∆t

0
F(Qi+ 1

2
(τ))dτ

Numerical source: Si ≈
1

∆t∆x

∫ ∆t

0

∫ x
i+1

2

x
i− 1

2

S(Qi(x, τ))dxdτ

 (20)

t

x

tn

tn+1

xi− 1
2

xi xi+ 1
2

Qn
i

Si

Qn+1
i

Fi− 1
2

Fi+ 1
2
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Main ingredients of the ADER approach:

• High-order non-linear spatial reconstruction: Pi(x), i = 1, 2, . . . ,M

• Numerical flux: solve high-order Riemann problem (or GRP): Qi+ 1
2
(τ)

• Initial conditions are piece-wise smooth (e.g. polynomials of any
degree), and

• Source terms are included

• Numerical source: solve high-order Cauchy problem in cell i: Qi(x, τ)
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The Generalized Riemann Problem (GRP)

Generalized Riemann problem for hyperbolic systems of balance laws:

PDEs: ∂tQ + ∂xF(Q) = S(Q) , x ∈ (−∞,∞) , t > 0

ICs: Q(x, 0) =


QL(x) if x < 0

QR(x) if x > 0

 (21)

Related works:

• Glimm et al. (1984)

• Ben-Artzi and Falcovitz (1984)

• Harten et al. (1987)

• LeFloch and Raviart (1989)

• Men’Shov (1990)

• LeFloch and Tatsien (1991)
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Classical and Generalized Riemann Problems

x = 0 x

q(x, 0)
qL

qR

x = 0 x

q(x, 0)

qL(x)

qR(x)

0 x

t

0 x

t

Local initial conditions and structure of solution of Riemann problem:
Left side: classical case; Right side: generalized case.
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Examples of the Generalized Riemann Problem

Example: Structure of the solution of the Generalized Riemann Problem (courtesy of Dr V A Titarev)
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Baer-Nunziato equations. GRP solution for solid phase pressure (Castro and Toro, 2006)
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Solvers for the Generalized Riemann Problem used
in ADER

1 Toro and Titarev (Proc. Roy. Soc. Lond. 2002). Semi-analytical
solution using Raviart/Le Floch expansion. Extension of
Ben-Artzi-Falcoviz method

2 Castro and Toro (JCP, 2008). Semi-analytical solution, analogous to
(1)

3 Dumbser, Enaux and Toro (JCP, 2008). Numerical evolution of data
coupled to interaction of evolved data at integration points via
classical Riemann problem. (Extension of Harten’s method). Can deal
with stiff source terms

4 Goetz and Iske (2014)

5 Montecinos and Toro (JCP, 2014), analogous to (1) but implicit. Can
deal with stiff source terms
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ADER: a generalisation of Godunov’s method

One-step conservative formula

Qn+1
i = Qn

i −
∆t

∆x
(Fi+ 1

2
− Fi− 1

2
) + ∆tSi (22)

Numerical flux

Fi+ 1
2

=
1

∆t

∫ ∆t

0
F(Qi+ 1

2
(τ))dτ → FGod

i+ 1
2

= F(Qi+ 1
2
(0) (23)

Numerical source

Si =
1

∆t∆x

∫ ∆t

0

∫ x
i+1

2

x
i− 1

2

S(Qi(x, τ))dxdτ (24)
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The three dimensional case

∂tQ + ∂xF(Q) + ∂yG(Q) + ∂zH(Q) = S(Q) (25)

Di+ 1
2

=
1

∆t

∫ ∆t

0

(∫ ∫
Ak

D · nkdA
)
dτ (26)
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ADER scheme for 1D blood flow

• GRP solver (Dumbser, Enaux, Toro, 2008)

• Underlying solver for classical RP (Dumbser, Toro, 2011)

• Well-balanced version (Mueller-Pares-Toro, 2013)+(Mueller-Toro,
2013)

10-1 100 101 102

CPU time [s]
10-10

10-9

10-8

10-7

10-6

Er
ro

r

ADER-O2
ADER-O5

For small errors efficiency gains of high order methods can be of two orders of magnitude.
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A global model for the human circulation
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Global mathematical model for the human circulation
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• Lucas O. Müller and Eleuterio F. Toro. A global multi-scale model for the human circulation with emphasis on the
venous system. International Journal for Numerical Methods in Biomedical Engineering. Article first published online:
15th January 2014; DOI: 10.1002/cnm.2622

• Lucas O. Müller and Eleuterio F. Toro. Enhanced global mathematical model for studying cerebral venous blood flow.
20 March 2014. Pre-print. Isaac Newton Institute for Mathematical Sciences, University of Cambridge, UK.
http://www.newton.ac.uk/preprints2014.html
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Veins
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Veins (anatomical data from Prof. M Haacke, Detroit)

MIP-TOF for a healthy patient.
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Veins (anatomical data from Prof. M Haacke, Detroit)

Planes at which PC-MRI flow measures were acquired for neck veins at C2-C3, C5-C6 and C7-T1 levels (left) and for dural
sinuses (right). The three acquisition planes along the neck allow to evaluate how flow rate increases as tributary veins merge
the internal jugular veins, whereas the acquisition plane for dural sinues allows the evaluation of flow for the Superior Sagittal

Sinus, the Straight Sinus and both Transverse Sinuses.
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First validation exercise: flow in head and neck veins
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Second validation exercise: pressure and velocity in dural
sinuses
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Computational results (lines) and MRI measurements (symbols). Measurements, curtesy of Prof. M E Haacke
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Brain haemodynamics: a computational study
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Left Internal Jugular Vein (LIJV)
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Vessel position computation. CCSVI cases A and B.

Predicted results.
Computed pressure and flow in left IJV at C2/C3 level (distal level).
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Superior Sagittal Sinus
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Vessel location. CCSVI cases A and B.

Predicted results.
Computed pressure and flow in the left Inferior Petrosal Sinus.
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Left Inferior Petrosal Sinus
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Vessel location. CCSVI cases A and B.

Predicted results.
Computed pressure and flow in the left Inferior Petrosal Sinus.
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Intracranial Pressure
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Right Basal Vein of Rosenthal
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Predicted results.
Computed pressure and flow in the right Basal Vein of Rosenthal.
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Cortical Vein
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Predicted results.
Computed pressure and flow in a cortical vein that drains into the SSS
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Impact of CCSVI on brain haemodynamics

• We predict increased pressure and disturbed blood flow in brain
venous vasculature

• Extra-cranial venous anomalies have

• a direct impact on pressure in dural sinuses

• an indirect impact on pressure in cerebral veins

• Intracranial pressure increase is modest (15 %) but chronic

• Our predictions are for subjects on supine position

• Real life posture is likely to accentuate the predicted impact
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Concluding remarks
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• Our global mathematical model can predict the haemodynamics of
the entire human circulation system

• In particular, pressure in the brain can be predicted (non-invasively,
obviously). Major practical implications

• Our predictions support Zamboni’s hypothesis: extracranial venous
strictures produce intra-cranial venous hypertension

• Work in progress on Idiopathic Parkinson’s Disease. Preliminary
results support MRI observations

• Work in progress on Hearing Loss Pathologies. Preliminary results

• Work in progress on improvements of the model
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