Minimi quadrati e problemi di distanza minima

Consideriamo una matrice rettangolare B, con elementi b_{ij} , i = 1, ..., n, j = 1, ..., m, con m < n (quindi, più righe che colonne). Vogliamo "risolvere" il sistema lineare

$$(1) B\mathbf{x} = \mathbf{b},$$

dove $\mathbf{b} \in \mathbf{R}^n$ è un vettore dato.

Dal teorema della dimensione dell'algebra lineare sappiamo che la soluzione, se esiste, è unica se e solo se B è di rango massimo (cioè esiste un minore $m \times m$ di B che è non-singolare). Dal Teorema di Rouché–Capelli si sa che la soluzione esiste se e solo se il rango di B coincide con il rango della matrice ($B|\mathbf{b}$), ottenuta aggiungendo a B la colonna data dal termine noto \mathbf{b} .

Quello che qui vogliamo fare è però dare un senso alla "soluzione" di (1) per B di rango massimo e per qualunque valore di $\mathbf{b} \in \mathbf{R}^n$, cioè anche se il rango di $(B|\mathbf{b})$ è diverso da m (il che vuol dire, in questa situazione, che è uguale a m+1).

L'ipotesi è dunque solamente:

- (*) B sia di rango massimo e sia $\mathbf{b} \in \mathbf{R}^n$.
 - "Risolvere" significa minimizzare

Bisogna dare un senso opportuno alla parola "soluzione": l'idea è di considerare "soluzione" il vettore $\mathbf{x}^* \in \mathbf{R}^m$ che minimizza la distanza fra $B\mathbf{x}$ e \mathbf{b} , cioè

(2)
$$\mathbf{x}^* \in \mathbf{R}^m \text{ è tale da minimizzare } \psi(\mathbf{x}) = \|B\mathbf{x} - \mathbf{b}\|^2 = \sum_{i=1}^n \left(\sum_{j=1}^m b_{ij} x_j - b_i\right)^2.$$

Per prima cosa mostriamo che ψ ha effettivamente un minimo: dal momento che è continua (è un polinomio di secondo grado in m variabili, dunque è infinitamente differenziabile), è sufficiente mostrare che $\psi(\mathbf{x}) \to +\infty$ per $\|\mathbf{x}\| \to +\infty^{(1)}$. Siccome si ha $\psi(\mathbf{x}) \geq (\|B\mathbf{x}\| - \|\mathbf{b}\|)^2$, basta provare che $\|B\mathbf{x}\| \to +\infty$. Ora

$$||B\mathbf{x}||^2 = B\mathbf{x} \cdot B\mathbf{x} = B^T B\mathbf{x} \cdot \mathbf{x} \,,$$

e quindi la matrice quadrata B^TB è semi-definita positiva (cioè $B^TB\mathbf{x} \cdot \mathbf{x} \geq 0$ per ogni \mathbf{x}). D'altra parte $B^TB\mathbf{x} \cdot \mathbf{x} = 0$ se e solo se $B\mathbf{x} = \mathbf{0}$, e questo avviene se e solo se $\mathbf{x} = \mathbf{0}$, dal momento che B è di rango massimo. Quindi B^TB è definita positiva (cioè $B^TB\mathbf{x} \cdot \mathbf{x} > 0$ per ogni $\mathbf{x} \neq \mathbf{0}$). Essendo ovviamente simmetrica $((B^TB)^T = B^T(B^T)^T = B^TB)$, si deduce che il suo autovalore minimo μ_{\min} è strettamente positivo, e che

$$\|B\mathbf{x}\|^2 = B^T B\mathbf{x} \cdot \mathbf{x} \geq \mu_{\min} \|\mathbf{x}\|^2 \to +\infty \,.$$

Chiamiamo dunque \mathbf{x}^* un punto di minimo di ψ : esso è un punto stazionario di ψ e per individuarlo calcoliamo il gradiente di ψ . Si ha, per $k=1,\ldots,m$:

$$\frac{\partial \psi}{\partial x_k}(\mathbf{x}) = \frac{\partial}{\partial x_k} \left[\sum_{i=1}^n \left(\sum_{j=1}^m b_{ij} x_j - b_i \right)^2 \right]$$

$$= 2 \sum_{i=1}^n \left(\sum_{j=1}^m b_{ij} x_j - b_i \right) \frac{\partial}{\partial x_k} \left(\sum_{j=1}^m b_{ij} x_j - b_i \right)$$

$$= 2 \sum_{i=1}^n \left(\sum_{j=1}^m b_{ij} x_j - b_i \right) \sum_{j=1}^m b_{ij} \frac{\partial x_j}{\partial x_k}.$$

⁽¹⁾ Se $\psi(\mathbf{x}) \to +\infty$, fissata la soglia $M = |\psi(\mathbf{0})|$ esiste r > 0 per cui per $\|\mathbf{x}\| > r$ si ha $\psi(\mathbf{x}) \ge M$. D'altro canto, dal Teorema di Weierstrass ψ ha un minimo sull'insieme chiuso e limitato $B_r = \{\mathbf{x} \in \mathbf{R}^m \mid \|\mathbf{x}\| \le r\}$, cioè si ha $\psi(\mathbf{x}) \ge \nu$ per $\|\mathbf{x}\| \le r$, avendo definito $\nu = \min_{B_r} \psi(\mathbf{x})$; in particolare $\psi(\mathbf{0}) \ge \nu$. Di conseguenza, per $\|\mathbf{x}\| > r$ si ha $\psi(\mathbf{x}) \ge M \ge \psi(\mathbf{0}) \ge \nu$, e cosí ν risulta il valore di minimo di ψ non solo in B_r ma in tutto \mathbf{R}^m .

Siccome

$$\frac{\partial x_j}{\partial x_k} = \begin{cases} 1 & \text{se } j = k \\ 0 & \text{se } j \neq k \end{cases},$$

si conclude che

$$\frac{\partial \psi}{\partial x_k}(\mathbf{x}) = 2 \sum_{i=1}^n \left(\sum_{j=1}^m b_{ij} x_j - b_i \right) b_{ik}.$$

D'altra parte $b_{ik} = (B)_{ik} = (B^T)_{ki}$, quindi possiamo riscrivere

$$\operatorname{grad} \psi(\mathbf{x}) = 2B^T(B\mathbf{x} - \mathbf{b}).$$

Ogni punto stazionario \mathbf{x} di ψ dunque soddisfa

$$B^T B \mathbf{x} = B^T \mathbf{b} \,.$$

Avendo già verificato che, se B è di rango massimo, la matrice B^TB è simmetrica e definita positiva, dunque non-singolare, la soluzione di (3) è unica, quindi c'è un solo punto stazionaro di ψ , e questo punto stazionario è l'unico punto di minimo \mathbf{x}^* di ψ .

In conclusione, per "risolvere" il sistema (1), nel senso dato da (2), bisogna trovare l'unica soluzione \mathbf{x}^* del sistema (3). Questa soluzione viene chiamata "soluzione ai minimi quadrati".

• Un esempio: retta di regressione lineare

Si vuole rispondere alla domanda: qual è la retta $y = \alpha x + \beta$ che "passa" per tre o più punti non allineati? Se i punti sono (x_i, y_i) , i = 1, ..., n, con $n \ge 3$, si vuole risolvere il sistema

(4)
$$\begin{cases} \alpha x_1 + \beta = y_1 \\ \alpha x_2 + \beta = y_2 \\ \dots \\ \alpha x_n + \beta = y_n \end{cases}$$

Se i punti (x_i, y_i) non sono allineati, il sistema (4) non ha soluzione. Però si può provare a "risolverlo" nel senso dei minimi quadrati.

La matrice che esprime il sistema lineare (4) è la matrice $n \times 2$

$$B = \begin{pmatrix} x_1 & 1 \\ x_2 & 1 \\ \dots & \\ x_n & 1 \end{pmatrix}.$$

Se per almeno una coppia di indici distinti i_1 e i_2 si ha $x_{i_1} \neq x_{i_2}$ (cioè se nel piano (x,y) i punti non sono tutti su una retta verticale) la matrice B risulta di rango massimo. Dunque basta risolvere

$$B^T B \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = B^T \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix}.$$

Si ha

$$B^{T}B = \begin{pmatrix} \sum_{i=1}^{n} x_{i}^{2} & \sum_{i=1}^{n} x_{i} \\ \sum_{i=1}^{n} x_{i} & n \end{pmatrix} , B^{T} \begin{pmatrix} y_{1} \\ y_{2} \\ \dots \\ y_{n} \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^{n} x_{i} y_{i} \\ \sum_{i=1}^{n} y_{i} \end{pmatrix} ,$$

per cui

(5)
$$\alpha = \frac{n \sum_{i=1}^{n} x_i y_i - \left(\sum_{i=1}^{n} x_i\right) \left(\sum_{i=1}^{n} y_i\right)}{n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2}$$

$$\beta = \frac{\left(\sum_{i=1}^{n} x_i^2\right) \left(\sum_{i=1}^{n} y_i\right) - \left(\sum_{i=1}^{n} x_i\right) \left(\sum_{i=1}^{n} x_i y_i\right)}{n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2}.$$

• Un altro problema: polinomio di distanza minima

La domanda è: qual è il polinomio di grado N che ha distanza minima da una funzione F assegnata? Il primo problema è definire il concetto di "distanza fra funzioni". Possiamo procedere in questo modo: se abbiamo due funzioni F e G, definite e (per esempio) continue in un intervallo [a,b], un prodotto scalare fra di loro può essere definito come

$$\langle F, G \rangle = \int_a^b F(x) G(x) dx$$
.

[Controllate che questa definizione soddisfi tutte le proprietà di un prodotto scalare.]

Avendo un prodotto scalare si ha una norma: $||F||_* = \langle F, F \rangle^{1/2}$ (scriviamo $||F||_*$ per distinguerla dalla norma euclidea di un vettore \mathbf{a} , che è indicata con $||\mathbf{a}||$); avendo una norma si ha una distanza: $\operatorname{dist}(F,G) = ||F-G||_*$.

La domanda iniziale dunque si riformula cosí: data una funzione F, definita e continua in [a, b], determinare il polinomio $P_N(x)$ di grado N che minimizza la distanza (al quadrato) da F, cioè che minimizza

$$||P_N - F||_*^2 = \int_a^b (P_N(x) - F(x))^2 dx$$
.

Siccome un polinomio di grado N si scrive come $P_N(x) = \sum_{j=0}^N a_j x^j$, si tratta di trovare i coefficienti $a_j, j=0,1,\ldots,N$, che minimizzano la funzione di N+1 variabili

$$Q(a_0, ..., a_N) = \int_a^b \left(\sum_{i=0}^N a_i x^j - F(x) \right)^2 dx.$$

Si può dimostrare che in \mathbb{R}^{N+1} questa funzione Q ha un valore minimo⁽²⁾. Come al solito, per trovare un punto di minimo cerchiamo un punto stazionario. Calcoliamo il gradiente di Q (derivando sotto il segno

$$q(\mathbf{a}) = q\left(\|\mathbf{a}\|\frac{\mathbf{a}}{\|\mathbf{a}\|}\right) = \|\mathbf{a}\| q\left(\frac{\mathbf{a}}{\|\mathbf{a}\|}\right) \ge m_1 \|\mathbf{a}\| \to +\infty$$

(si è considerato $t = \|\mathbf{a}\| > 0$ e $\mathbf{w} = \frac{\mathbf{a}}{\|\mathbf{a}\|} \in S_1$).

⁽²⁾ Se proprio lo volete sapere... Scriviamo $\mathbf{a}=(a_0,\dots,a_N)$. La funzione Q è un polinomio di secondo grado nelle N+1 variabili a_0,a_1,\dots,a_N , dunque è infinitamente differenziabile in \mathbf{R}^{N+1} . Come nel caso precedente, per vedere che ha un minimo basta mostrare che $Q(\mathbf{a}) \to +\infty$ per $\|\mathbf{a}\| \to +\infty$. Si ha $Q(\mathbf{a}) \geq (\|P_N\|_* - \|F\|_*)^2$, quindi basta dimostrare che $\|P_N\|_* = \|\sum_{j=0}^N a_i x^j\|_* \to +\infty$ per $\|\mathbf{a}\| \to +\infty$. Definiamo $q(\mathbf{a}) = \|\sum_{j=0}^N a_j x^j\|_*$. Una prima osservazione è che $q(\mathbf{a}) = 0$ se e solo se il polinomio $\sum_{j=0}^N a_j x^j$ è nullo, cioè se e solo se $\mathbf{a} = \mathbf{0}$. Siccome q è una funzione continua, dal Teorema di Weierstrass ha minimo m_1 sull'insieme chiuso e limitato $S_1 = \{\mathbf{v} \in \mathbf{R}^{N+1} \mid \|\mathbf{v}\| = 1\}$, e, per quanto appena detto, questo minimo deve soddisfare $m_1 > 0$. Siccome si ha $q(t\mathbf{w}) = tq(\mathbf{w})$ per ogni t > 0 ed ogni $\mathbf{w} \in \mathbf{R}^{N+1}$, preso $\mathbf{a} \in \mathbf{R}^{N+1}$, $\mathbf{a} \neq \mathbf{0}$, si deduce

di integrale, operazione che è giustificata nel caso in questione):

$$\frac{\partial Q}{\partial a_k}(a_0, \dots, a_N) = \int_a^b \frac{\partial}{\partial a_k} \left(\sum_{j=0}^N a_j x^j - F(x) \right)^2 dx$$

$$= 2 \int_a^b \left(\sum_{j=0}^N a_j x^j - F(x) \right) \frac{\partial}{\partial a_k} \left(\sum_{j=0}^N a_j x^j - F(x) \right) dx$$

$$= 2 \int_a^b \left(\sum_{j=0}^N a_j x^j - F(x) \right) \left(\sum_{j=0}^N x^j \frac{\partial a_j}{\partial a_k} \right) dx.$$

Siccome

$$\frac{\partial a_j}{\partial a_k} = \begin{cases} 1 & \text{se } j = k \\ 0 & \text{se } j \neq k \end{cases},$$

si conclude che

$$\frac{\partial Q}{\partial a_k}(a_0,\ldots,a_N) = 2 \int_a^b \left(\sum_{i=0}^N a_j x^j - F(x)\right) x^k dx.$$

Se definiamo per $j, k = 0, \dots, N$ gli elementi a_{kj} della matrice A e le componenti f_k del vettore \mathbf{f} come

$$a_{kj} = \int_a^b x^{j+k} dx$$
, $f_k = \int_a^b F(x) x^k dx$,

abbiamo ottenuto che grad $Q = 2(A\mathbf{a} - \mathbf{f})$, e dunque i punti stazionari di Q sono le soluzioni del sistema lineare

$$A\mathbf{a} = \mathbf{f} .$$

La matrice A è chiaramente simmetrica, ed è anche definita positiva. Infatti, per $\mathbf{v} \in \mathbf{R}^{N+1}$ si ha

$$A\mathbf{v} \cdot \mathbf{v} = \sum_{k,j=0}^{N} a_{kj} v_j v_k = \sum_{k,j=0}^{N} v_j v_k \int_a^b x^j x^k dx$$
$$= \int_a^b \left(\sum_{j=0}^{N} v_j x^j \right) \left(\sum_{k=0}^{N} v_k x^k \right) dx = \int_a^b \left(\sum_{j=0}^{N} v_j x^j \right)^2 dx.$$

Quindi $A\mathbf{v} \cdot \mathbf{v} \ge 0$, e $A\mathbf{v} \cdot \mathbf{v} = 0$ se e solo se il polinomio $\sum_{j=0}^{N} v_j x^j$ è nullo, cioè se e solo se tutti i coefficienti v_j sono nulli (ossia $\mathbf{v} = \mathbf{0}$).

Si può dunque concludere che la matrice A è non-singolare, e il sistema (6) ha soluzione unica, cioè la funzione Q ha un unico punto stazionario, l'unico suo punto di minimo. In conclusione, il polinomio $P_N(x) = \sum_{j=0}^N a_j x^j$ di distanza minima dalla funzione F è univocamente determinato dai coefficienti a_0, a_1, \ldots, a_N soluzione del sistema (6).

Approfondimento sul tema:

Si noti che il problema potrebbe essere semplificato se avessimo rappresentato il polinomio P_N tramite una base polinomiale più "astuta" (lo spazio dei polinomi di grado N definiti in un intervallo [a,b] sono uno spazio vettoriale di dimensione N+1, dunque un qualunque sistema di N+1 polinomi di grado N fra loro linearmente indipendenti sono una base). La base che abbiamo utilizzato nell'esempio precedente sembra la più semplice, essendo data dai polinomi $1, x, \ldots, x^N$. Ma se ad essa applichiamo il procedimento di ortonormalizzazione di Gram-Schmidt, utilizzando il prodotto scalare $\langle \cdot, \cdot \rangle$, troviamo una base ortonormale di polinomi. Chiamiamoli $L_j(x), j=0,1,\ldots,N$: in particolare si verifica facilmente che L_j è di grado j. Ora si cercano i coefficienti $\widehat{a}_0, \widehat{a}_1, \ldots, \widehat{a}_N$ del polinomio $P_N(x) = \sum_{j=0}^N \widehat{a}_j L_j(x)$ in modo tale che esso sia

di distanza minima dalla funzione F. Ripetendo il procedimento di minimizzazione ora presentato si arriva facilmente a verificare che il vettore $\hat{\mathbf{a}} \in \mathbf{R}^{N+1}$ cercato è la soluzione del sistema lineare

$$\widehat{A}\,\widehat{\mathbf{a}} = \widehat{\mathbf{f}}\,,$$

ove

$$\widehat{a}_{kj} = \int_a^b L_j(x) L_k(x) dx$$
 , $\widehat{f}_k = \int_a^b F(x) L_k(x) dx$.

Ora un'osservazione importante: siccome la base di polinomi L_j è ortonormale rispetto al prodotto scalare $\langle \cdot, \cdot \rangle$, si ha che

$$\int_{a}^{b} L_{j}(x)L_{k}(x) dx = \begin{cases} 1 & \text{se } j = k \\ 0 & \text{se } j \neq k \end{cases}$$

e di conseguenza la matrice \widehat{A} è la matrice identità! La soluzione di \widehat{A} $\widehat{\mathbf{a}} = \widehat{\mathbf{f}}$ è dunque $\widehat{\mathbf{a}} = \widehat{\mathbf{f}}!$

In conclusione: utilizzando la base di polinomi ortonormali L_j (si chiamano polinomi di Legendre), il polinomio di distanza minima dalla funzione F è

$$P_N(x) = \sum_{j=0}^{N} \widehat{a}_j L_j(x) , \ \widehat{a}_j = \int_a^b F(x) L_j(x) dx,$$

di calcolo immediato (se si hanno a disposizione i polinomi di Legendre $L_j...$).

Va infine osservato che questi polinomi, oltre a poter essere determinati ogni volta che occorra a partire da $1, x, \ldots, x^N$ tramite il procedimento di Gram–Schmidt, sono stati calcolati esplicitamente per ogni grado N tramite una formula di ricorrenza e sono riportati nei libri che trattano di questi argomenti. Per esempio, nell'intervallo [-1,1] si ha

$$L_0(x) = \frac{1}{\sqrt{2}}, L_1(x) = \frac{\sqrt{3}}{\sqrt{2}}x, L_2(x) = \frac{\sqrt{5}}{\sqrt{2}} \left(\frac{3}{2}x^2 - \frac{1}{2}\right), L_3(x) = \frac{\sqrt{7}}{\sqrt{2}} \left(\frac{5}{2}x^3 - \frac{3}{2}x\right), \dots \right]$$

• Un altro problema: "polinomio" trigonometrico di distanza minima

Un problema simile al precedente è quello di trovare un "polinomio" trigonometrico Q_N di distanza minima da una data funzione (continua) F. (Per "polinomio" trigonometrico si intende una funzione del tipo

$$Q_N(x) = A_0 + \sum_{j=1}^{N} [A_j \cos(jx) + B_j \sin(jx)];$$

per esempio, noi consideriamo qui nel seguito una funzione della forma $Q_N(x) = \sum_{j=1}^N B_j \sin(jx)$, e l'intervallo $[0,\pi]$.)

Si tratta dunque di minimizzare la funzione

$$S(B_1, ..., B_N) = \int_0^{\pi} \left(\sum_{j=1}^N B_j \sin(jx) - F(x) \right)^2 dx,$$

che è un polinomio di secondo grado rispetto alle N variabili $\mathbf{B} = (B_1, \dots, B_N)$.

[In modo molto simile al caso precedente si può vedere che S ha minimo in \mathbf{R}^N . L'unico passaggio che richiede un attimo di riflessione è l'affermazione che $\int_0^{\pi} \left(\sum_{j=1}^N B_j \sin(jx)\right)^2 dx = 0$ se e solo se $\mathbf{B} = \mathbf{0}$: ma questo sarà chiaro fra un attimo...]

Come al solito cerchiamo i punti stazionari, derivando sotto al segno di integrale:

$$\frac{\partial S}{\partial B_k}(B_1, \dots, B_N) = \int_0^\pi \frac{\partial}{\partial B_k} \left(\sum_{j=1}^N B_j \sin(jx) - F(x) \right)^2 dx$$

$$= 2 \int_0^\pi \left(\sum_{j=1}^N B_j \sin(jx) - F(x) \right) \frac{\partial}{\partial B_k} \left(\sum_{j=1}^N B_j \sin(jx) - F(x) \right) dx$$

$$= 2 \int_0^\pi \left(\sum_{j=1}^N B_j \sin(jx) - F(x) \right) \left(\sum_{j=1}^N \sin(jx) \frac{\partial B_j}{\partial B_k} \right) dx.$$

Siccome

$$\frac{\partial B_j}{\partial B_k} = \begin{cases} 1 & \text{se } j = k \\ 0 & \text{se } j \neq k \end{cases},$$

si conclude che

$$\frac{\partial S}{\partial B_k}(B_1, \dots, B_N) = 2 \int_0^{\pi} \left(\sum_{i=1}^N B_i \sin(jx) - F(x) \right) \sin(kx) dx.$$

Ma il sistema $\sin(jx)$, $j=1,\ldots,N$ è ortogonale rispetto al prodotto scalare $\langle \cdot, \cdot \rangle$ considerato nell'intervallo $[0,\pi]$, dato che vale (integrazione per parti...)

(8)
$$\int_0^{\pi} \sin(jx) \sin(kx) dx = \begin{cases} \frac{\pi}{2} & \text{se } j = k \\ 0 & \text{se } j \neq k \end{cases}$$

Dunque imponendo che $\frac{\partial S}{\partial B_k} = 2 \int_0^{\pi} \left(\sum_{j=1}^N B_j \sin(jx) - F(x) \right) \sin(kx) dx = 0$ per ogni k = 1, ..., N, si verifica immediatamente che l'unico punto stazionario di S soddisfa

$$B_k = \frac{2}{\pi} \int_0^{\pi} F(x) \sin(kx) dx$$
, $k = 1, ..., N$.

Si conclude quindi che il "polinomio" trigonometrico di minima distanza da F è dato da

$$Q_N(x) = \sum_{j=1}^N B_j \sin(jx)$$
, $B_j = \frac{2}{\pi} \int_0^{\pi} F(x) \sin(jx) dx$.

Si può vedere che mandando N all'infinito la distanza di Q_N da F tende a 0, cioè che F si può sviluppare in serie: la sua serie di Fourier! [Per chi non ha mai sentito parlare di una serie questa affermazione è un po' misteriosa: diciamo che F coincide con la "somma" degli infiniti addendi $B_j \sin(jx)$, $j = 1, 2, \ldots$]

[Ora è anche chiaro che $\int_0^{\pi} \left(\sum_{j=1}^N B_j \sin(jx)\right)^2 dx = 0$ se e solo se $\mathbf{B} = \mathbf{0}$: infatti innanzitutto si ha $\sum_{j=1}^N B_j \sin(jx) = 0$ per ogni $x \in [0, \pi]$, e dunque moltiplicando per $\sin(kx)$ e integrando su $[0, \pi]$ si ottiene

$$\int_0^{\pi} \sum_{j=1}^N B_j \sin(jx) \sin(kx) = 0, k = 1, \dots, N.$$

Quindi usando (8) ne segue subito $\frac{\pi}{2}B_k=0$ per $k=1,\ldots,N,$ cioè $\mathbf{B}=\mathbf{0}.$