Programma del corso di ANALISI MATEMATICA I

per Ingegneria dell'Informazione e dell'Organizzazione

(a.a. 2005/06)

1. Funzioni elementari

- Potenze, polinomi, esponenziali.
- Funzioni trigonometriche (seno, coseno, tangente).
- Funzioni inverse: radici, logaritmi, funzioni trigonometriche inverse (arcoseno, arcocoseno, arcotangente).
- Grafici delle funzioni elementari.

2. Limiti e funzioni continue

- Limite di una funzione e di una successione.
- Funzioni continue. Esempi di discontinuità. Continuità della funzione composta.
- Regole di calcolo per i limiti (somma, prodotto con scalari, prodotto, rapporto) (senza dimostrazione).
- Criterio di confronto per limiti (o teorema dei "carabinieri").
- Esistenza del limite per funzioni monotone (senza dimostrazione). Limitatezza locale di funzioni convergenti. Il prodotto di una funzione infinitesima per una limitata è una funzione infinitesima.
- Teorema di permanenza del segno.
- Teorema di esistenza degli zeri e teorema dei valori intermedi.
- Teorema di Weierstrass (senza dimostrazione).
- Limiti notevoli (per $x \to 0$): $\frac{\sin x}{x}$, $\frac{1-\cos x}{x^2}$, $\frac{\log(1+x)}{x}$, $\frac{e^x-1}{x}$.

3. Derivate

- Definizione. Retta tangente a un grafico.
- Regole di derivazione (somma, prodotto con scalari, prodotto, rapporto) (senza dimostrazione).
- La derivabilità implica la continuità.
- Derivazione di funzione composta. Derivazione della funzione inversa.
- Teorema di Fermat sull'annullamento della derivata in un punto di estremo in-
- Ricerca del massimo e del minimo di una funzione.
- Teorema del valor medio (o di Lagrange).
- Segno della derivata prima e crescenza/decrescenza.
- Segno della derivata seconda e convessità/concavità.
- Asintoti obliqui.
- Formula di Taylor (senza dimostrazione) e suo uso nei limiti.
- Sviluppi di Taylor di e^x , $\sin x$, $\cos x$, $\log(1+x)$.
- Criterio dell'Hôpital (senza dimostrazione).

4. Serie numeriche

- Somme di "infiniti" addendi: successione delle somme parziali, serie numeriche. Serie geometrica $\sum_{n=0}^{\infty} a^n$. Serie armonica $\sum_{n=1}^{\infty} n^{-\alpha}$, $\alpha > 0$. Serie telescopiche.

- Criterio del confronto, del confronto asintotico, della radice e del rapporto per serie a termini non negativi (traccia delle dimostrazioni).
- Criterio di Leibnitz per serie a termini di segno alterno (senza dimostrazione).
- Condizione necessaria di convergenza della serie $\sum_{n=0}^{\infty} a_n \ (a_n \to 0)$.
- La convergenza assoluta implica la convergenza (senza dimostrazione).
- Sviluppi in serie di Taylor di e^x , $\sin x$, $\cos x$, $\log(1+x)$.

5. Integrali

- Integrale come area: definizione.
- Teorema fondamentale del calcolo integrale: $\int_a^b f'(x)dx = f(b) f(a)$ (senza dimostrazione).
- Proprietà dell'integrale: linearità, additività, monotonia (senza dimostrazione).
- Teorema della media integrale.
- Regole di integrazione: per sostituzione e per parti.
- Metodi per calcolare $\int \frac{Ax+B}{X^2+ax+b} dx$.

6. Equazioni differenziali

- Equazioni differenziali lineari e non lineari.
- Equazioni differenziali non lineari del I ordine a variabili separabili.
- Equazioni differenziali lineari del I ordine: caso omogeneo e caso non omogeneo (tramite il metodo della variazione della costante).
- Equazioni differenziali lineari del II ordine a coefficenti costanti. Caso omogeneo: metodo del polinomio associato. Caso non omogeneo: metodo di "somiglianza" per polinomi, esponenziali, seni e coseni.

Esercitazioni.

È richiesta la capacità di risolvere esercizi sui seguenti argomenti:

- 1. Calcolo di limiti di funzioni e successioni, anche tramite la formula di Taylor e il criterio dell'Hôpital.
- 2. Calcolo di derivate. Calcolo della retta tangente.
- 3. Calcolo del massimo e del minimo di una funzione.
- 4. Grafici di funzioni.
- 5. Studio delle proprietà di convergenza di una serie.
- 6. Calcolo di integrali.
- 7. Risoluzione di equazioni differenziali.

Testo di Riferimento.

M. Bramanti, C. Pagani, S. Salsa. Matematica. Zanichelli, Bologna 2000. Cap. 3–7.

Modalità di Esame.

Un colloquio orale sugli argomenti del programma, soprattutto dal punto di vista teorico ma anche per quanto riguarda i metodi di risoluzione di esercizi, a cui si accede dopo aver preventivamente superato una prova scritta specificamente basata sulla risoluzione di esercizi.