Esercitazione di martedì 29/09/2015 Gruppo A-L

Limiti: Definizione di limite. Limiti di funzioni razionali ed irrazionali.

Esercizio 1. Quale tra le seguenti è la definizione di $\lim_{x\to +\infty} f(x) = 2$?

- (a) $\forall M > 0 \; \exists \delta > 0$ tale che se $0 < |x 2| < \delta$, allora f(x) > M;
- (b) $\forall A > 0 \; \exists B > 0 \; \text{tale che se} \; x > B, \; \text{allora} \; f(x) < -A;$
- (c) $\forall \alpha > 0 \ \exists \beta > 0$ tale che se $0 < |x-2| < \beta$, allora $|f(x)-2| < \alpha$;
- (d) $\forall M > 0 \; \exists \delta > 0 \; \text{tale che se} \; x > \delta$, allora |f(x) 2| < M.

Esercizio 2. Calcolare i seguenti limiti:

- (a) $\lim_{x \to -3^-} \frac{1}{x^2 9}$;
- (b) $\lim_{x \to +\infty} \frac{-2x^3 + 3x^2 + 1}{2x^2 + 4x^3}$;
- (c) $\lim_{t \to -\infty} \frac{t^2 + e^t}{e^{2t} 3t^2}$;
- (d) $\lim_{x \to +\infty} \frac{x\sqrt{x} + 2^{-x}}{x^2 x};$
- (e) $\lim_{x \to 1} \frac{x^3 + x 2}{x^3 x^2 x + 1}$;
- (f) $\lim_{x\to 2^+} \frac{\sqrt{x+2}-\sqrt{2x}}{\sqrt{x-2}};$
- (g) $\lim_{y \to +\infty} \sqrt{y^2 + 5y + 6} y;$
- (h) $\lim_{x\to 0} \frac{2x+x^2}{\sqrt{x+1}-1}$;
- (i) $\lim_{x\to 1} \frac{x^p-1}{x^q-1}$, dove p e q sono interi positivi;
- (l) $\lim_{x \to 1^{-}} \frac{1}{x-1} + \frac{x}{1-x^2}$.

Esercizio 3. Determinare $\lambda \in \mathbb{R}$ in modo che:

$$\lim_{x \to -\infty} \sqrt{x^2 - 1}(\sqrt{x^2 + \lambda} + x) = 4.$$