ANALISI MATEMATICA 1 - Quinto appello		12 settembre 2011
Cognome:	Nome:	Matricola:
Corso di laurea:		
		Test Es1 Es2 Es3

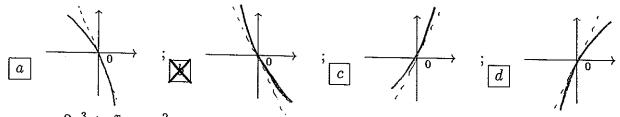
- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Se $z \in C$ è la soluzione di $(z-1)(\tilde{z}+1)=3+4i$ allora a l'argomento di z è $\pi/4$; b z è reale e non zero; z è immaginario puro e non zero; z d |z|=1.
- 2. $\int_0^{\pi/2} x^2 \cos(2x) dx = \begin{bmatrix} a \end{bmatrix} \frac{1}{8} (\pi 2); \quad \boxed{b} \quad \frac{1}{8} (\pi^2 4); \quad \boxed{X} \quad -\frac{\pi}{4}; \quad \boxed{d} \quad \frac{1}{32} (\pi^2 8).$
- 3. Per quali valori dei parametri $\alpha \in \mathbf{R}$ e $\beta \in \mathbf{R}$ la funzione

$$f(x) = \begin{cases} \frac{e^{2\alpha x} - 1}{x} & \text{per } x > 0\\ \cos x + e^x - 2\beta x & \text{per } x \le 0 \end{cases}$$

è continua e derivabile in x = 0?

$$\boxed{a}$$
 $\alpha = -1$, $\beta = 1$; \boxed{b} $\alpha = 1$, $\beta = -1$; \boxed{c} $\alpha = -1$, $\beta = -\frac{3}{2}$; $\boxed{\chi}$ $\alpha = 1$, $\beta = -\frac{1}{2}$.

4. La soluzione in un intorno di x=0 del problema di Cauchy $\begin{cases} y'=e^y(y-2) \\ y(0)=0 \end{cases}$ è



- 5. $\lim_{x \to +\infty} \frac{-2x^3 + e^x \cos^2 x}{\frac{3}{x^2} x^2} = \left[\sum_{x \to +\infty} -\infty; \ b \ 0; \ c \ -1; \ d \ +\infty. \right]$
- 7. Quale è l'insieme dei valori di $\alpha \in \mathbf{R}$ per i quali la serie $\sum_{n=1}^{+\infty} \left(e^{n^{\alpha}} 1 \right)$ converge? \boxed{a} $\alpha < -\frac{1}{2}$; \boxed{b} $\alpha > \frac{1}{2}$; \boxed{c} $\alpha > 1$; $\boxed{\mathbf{X}}$ $\alpha < -1$.
- 8. Quale delle seguenti è la definizione di $\lim_{x \to +\infty} f(x) = +\infty$ a per ogni K esiste $\delta = \delta(K)$ tale che se $0 < |x| < \delta$ allora f(x) > K; b per ogni $\epsilon > 0$ esiste $M = M(\epsilon)$ tale che se x > M allora $|f(x)| < \epsilon$; per ogni K esiste M = M(K) tale che se K > M allora K > M; d per ogni K > M allora M >