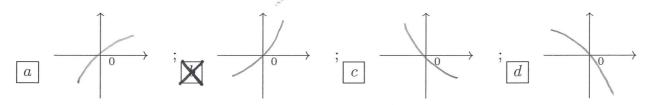
ANALISI MATEMATICA 1 - Secondo appello		14 febbraio 2020
Cognome:	Nome:	Matricola:
Corso di laurea:		

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Quali delle seguenti figure rappresenta il grafico vicino a x=0 del polinomio di Taylor di secondo grado e di centro $x_0=0$ della funzione $g(x)=e^{\sin(2x)}-1$?



- 2. Sia $f:[0,\pi] \mapsto \mathbf{R}$ una funzione continua con $f(0)=\frac{3}{2}, f(\pi)=2$. Per quale delle seguenti funzioni q(x) l'equazione f(x)=q(x) ha almeno una soluzione in $[0,\pi]$, qualunque sia la funzione f con le proprietà indicate? $\boxed{a} q(x)=3+\cos\frac{x}{2}; \boxed{b} q(x)=2+\sin\frac{x}{2};$ $\boxed{k} q(x)=1+\cos\frac{x}{2}; \boxed{d} q(x)=1-\sin\frac{x}{2}.$
- 3. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua con $\lim_{x \to +\infty} f(x) = 1$, $\lim_{x \to -\infty} f(x) = -1$, $f(0) = \frac{3}{2}$. Allora: a la funzione f ha sia massimo che minimo in a; b la funzione f ha massimo in a, ma non è detto che abbia minimo in a; a la funzione a ha minimo in a, ma non è detto che abbia massimo in a; a la funzione a può non avere né massimo né minimo in a.
- 4. Quale delle seguenti proprietà ha come conseguenza che la funzione $f: \mathbf{R} \mapsto \mathbf{R}$ è derivabile in $x_0 = 0$?

 $\boxed{a \text{ esiste } a \in \mathbf{R} \text{ tale che } \lim_{h \to 0} \frac{f(h) - ah}{h} = 0 ; \quad \boxed{b} \text{ esiste } a \in \mathbf{R} \text{ tale che } \lim_{h \to 0} \frac{f(h) + ah}{h} = 0;}$ esiste $a \in \mathbf{R}$ tale che $\lim_{h \to 0} \frac{f(h) - f(0) - ah^2}{h} = 0 ; \quad \boxed{d} \lim_{h \to 0} \frac{f(h) + f(0)}{h} = 0.$

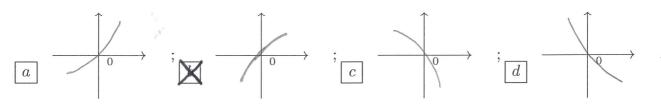
- 5. Il raggio di convergenza r > 0 della serie di potenze $\sum_{n=0}^{\infty} \frac{n^2 + 3^n}{2n^3 + 1} x^n$ è: a r = 2; $x = \frac{1}{3}$; $r = \frac{1}{3}$; r = 1; $r = \frac{1}{2}$.
- 6. Sia $\frac{a_0}{2} + \sum_{k=1}^{\infty} [a_k \cos(kx) + b_k \sin(kx)]$ la serie di Fourier della funzione $f(x) = e^{2x/\pi}$ nell'intervallo $(-\pi, \pi)$. Allora $a_4 = a \frac{e^2 1}{e(16\pi^2 + 1)}$; $a \frac{e^4 1}{2e^2(4\pi^2 + 1)}$; $a \frac{e^4 1}{2e^2(4\pi^2 + 1)}$; $a \frac{e^4 1}{2e^2(4\pi^2 + 1)}$;
- 7. I numeri complessi $z \in \mathbb{C}$ che soddisfano l'equazione $2z \overline{z} + |z|^2 = 2 i$ sono: $\boxed{a} -2 \pm \frac{\sqrt{19}}{2} + \frac{1}{2}i; \quad \boxed{b} \quad \frac{1}{2} \pm \frac{\sqrt{41}}{6} + \frac{1}{3}i; \quad \boxed{k} \quad -\frac{1}{2} \pm \frac{\sqrt{77}}{6} \frac{1}{3}i; \quad \boxed{d} \quad 1 \pm \frac{\sqrt{7}}{2} \frac{1}{2}i.$
- 8. $\lim_{n \to \infty} \frac{n^3 \, 2^{-n} + 3 \, n \, n!}{2n^2 + (n+1)!} = \boxed{a} \, 2; \quad \boxed{3}; \quad \boxed{c} \, \frac{1}{3}; \quad \boxed{d} \, \frac{1}{2}.$

ANALISI MATEMATICA 1 - Secondo appello		14 febbraio 2020
Cognome:	Nome:	Matricola:
Corso di laurea:		

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.

1.
$$\lim_{n \to \infty} \frac{n^2 \, 3^{-n} + 2 \, n \, n!}{3n^3 + (n+1)!} = \boxed{a} \, \frac{1}{3}; \, \boxed{b} \, \frac{1}{2}; \, \boxed{d} \, 3.$$

2. Quali delle seguenti figure rappresenta il grafico vicino a x=0 del polinomio di Taylor di secondo grado e di centro $x_0=0$ della funzione $g(x)=\log \left(\sin(2x)+1\right)$?

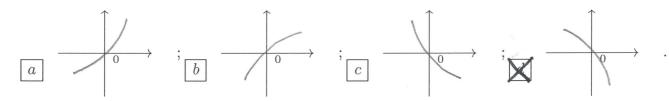


- 3. Sia $\frac{a_0}{2} + \sum_{k=1}^{\infty} [a_k \cos(kx) + b_k \sin(kx)]$ la serie di Fourier della funzione $f(x) = e^{-x/\pi}$ nell'intervallo $(-\pi, \pi)$. Allora $a_4 = a_1 = a_2 = a_3 = a_3 = a_4 = a_4 = a_3 = a_4 = a_3 = a_4 = a_4$
- 4. Sia $f:[0,\pi]\mapsto \mathbf{R}$ una funzione continua con $f(0)=3, f(\pi)=4$. Per quale delle seguenti funzioni q(x) l'equazione f(x)=q(x) ha almeno una soluzione in $[0,\pi]$, qualunque sia la funzione f con le proprietà indicate? $\boxed{a} q(x)=1+\cos\frac{x}{2}; \boxed{b} q(x)=1-\sin\frac{x}{2};$ $\boxed{\mathbf{K}} q(x)=3+\cos\frac{x}{2}; \boxed{d} q(x)=2+\sin\frac{x}{2}.$
- 5. I numeri complessi $z \in \mathbb{C}$ che soddisfano l'equazione $z 2\overline{z} + |z|^2 = 1 + i$ sono: $a \frac{1}{2} \pm \frac{\sqrt{77}}{6} \frac{1}{3}i;$ $b 1 \pm \frac{\sqrt{7}}{2} \frac{1}{2}i;$ $c 2 \pm \frac{\sqrt{19}}{2} + \frac{1}{2}i;$ $2 \pm \frac{\sqrt{41}}{6} + \frac{1}{3}i.$
- 6. Il raggio di convergenza r>0 della serie di potenze $\sum_{n=0}^{\infty} \frac{n^2+2^{-n}}{3n^3+1} x^n$ è: x=1; x=1;
- 7. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua con $\lim_{x \to +\infty} f(x) = 1, \lim_{x \to -\infty} f(x) = 1, f(0) = \frac{1}{2}$. Allora: \mathbf{K} la funzione f ha minimo in \mathbf{R} , ma non è detto che abbia massimo in \mathbf{R} ; \mathbf{K} la funzione \mathbf{K} può non avere né massimo né minimo in \mathbf{K} ; \mathbf{K} la funzione \mathbf{K} ha sia massimo che minimo in \mathbf{K} ; \mathbf{K} la funzione \mathbf{K} ha sia massimo che minimo in \mathbf{K} ; \mathbf{K} la funzione \mathbf{K} ha massimo in \mathbf{K} , ma non è detto che abbia minimo in \mathbf{K} .
- 8. Quale delle seguenti proprietà ha come conseguenza che la funzione $f: \mathbf{R} \mapsto \mathbf{R}$ è derivabile in $x_0 = 0$?

esiste $a \in \mathbf{R}$ tale che $\lim_{h \to 0} \frac{f(h) - f(0) - ah^2}{h} = 0$; $\boxed{b} \lim_{h \to 0} \frac{f(h) + f(0)}{h} = 0$; \boxed{c} esiste $a \in \mathbf{R}$ tale che $\lim_{h \to 0} \frac{f(h) - ah}{h} = 0$; \boxed{d} esiste $a \in \mathbf{R}$ tale che $\lim_{h \to 0} \frac{f(h) + ah}{h} = 0$.

ANALISI MATEMATICA 1 - Secondo appello		14 febbraio 2020
Cognome:	Nome:	Matricola:
Corso di laurea:		

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. I numeri complessi $z \in \mathbf{C}$ che soddisfano l'equazione $2z \overline{z} + |z|^2 = 2 i$ sono: $\boxed{a} \quad \frac{1}{2} \pm \frac{\sqrt{41}}{6} + \frac{1}{3}i; \quad \boxed{\sum} \quad -\frac{1}{2} \pm \frac{\sqrt{77}}{6} \frac{1}{3}i; \quad \boxed{c} \quad 1 \pm \frac{\sqrt{7}}{2} \frac{1}{2}i; \quad \boxed{d} \quad -2 \pm \frac{\sqrt{19}}{2} + \frac{1}{2}i.$
- 2. Il raggio di convergenza r > 0 della serie di potenze $\sum_{n=0}^{\infty} \frac{n^2 + 3^n}{2n^3 + 1} x^n$ è: $x = \frac{1}{3}$; $x = \frac{$
- 3. Quali delle seguenti figure rappresenta il grafico vicino a x=0 del polinomio di Taylor di secondo grado e di centro $x_0=0$ della funzione $g(x)=\log (1-\sin(2x))$?



- 4. Sia $\frac{a_0}{2} + \sum_{k=1}^{\infty} [a_k \cos(kx) + b_k \sin(kx)]$ la serie di Fourier della funzione $f(x) = e^{-2x/\pi}$ nell'intervallo $(-\pi, \pi)$. Allora $a_4 = \sum_{k=1}^{\infty} \frac{e^4 1}{2e^2(4\pi^2 + 1)};$ $b = \frac{e^2 1}{e^2(16\pi + 1)};$ $c = \frac{e^4 1}{2e(4\pi + 1)};$ $c = \frac{e^4 1}{2e(4\pi + 1)};$ $c = \frac{e^4 1}{2e(4\pi + 1)};$
- 5. Quale delle seguenti proprietà ha come conseguenza che la funzione $q: \mathbf{R} \mapsto \mathbf{R}$ è derivabile in $x_0 = 0$?

 $\boxed{a \text{ esiste } b \in \mathbf{R} \text{ tale che } \lim_{h \to 0} \frac{q(h) + bh}{h} = 0 ;} \qquad \boxed{\mathbf{X} \text{ esiste } b \in \mathbf{R} \text{ tale che } \lim_{h \to 0} \frac{q(h) - q(0) - bh^2}{h} = 0 ;} \qquad \boxed{b} = 0 ;} \qquad \boxed{d \text{ esiste } b \in \mathbf{R} \text{ tale che } \lim_{h \to 0} \frac{q(h) - bh}{h} = 0.$

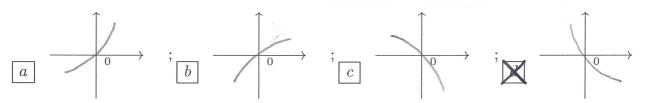
- 6. $\lim_{n \to \infty} \frac{n^2 3^{-n} + 2 n n!}{3n^3 + (n+1)!} = \boxed{a} \ 3; \ \boxed{b} \ \frac{1}{3}; \ \boxed{c} \ \frac{1}{2}; \ \boxed{2}.$
- 7. Sia $f:[0,\pi]\mapsto \mathbf{R}$ una funzione continua con $f(0)=3, f(\pi)=2$. Per quale delle seguenti funzioni q(x) l'equazione f(x)=q(x) ha almeno una soluzione in $[0,\pi]$, qualunque sia la funzione f con le proprietà indicate? $q(x)=2+\sin\frac{x}{2};$ $p(x)=1-\sin\frac{x}{2};$ $p(x)=3+\cos\frac{x}{2}$.
- 8. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua con $\lim_{x \to +\infty} f(x) = 1$, $\lim_{x \to -\infty} f(x) = 1$, f(-1) = 2, f(1) = 0. Allora: a la funzione f ha massimo in \mathbf{R} , ma non è detto che abbia minimo in \mathbf{R} ; b la funzione f ha minimo in \mathbf{R} , ma non è detto che abbia massimo in \mathbf{R} ; c la funzione f può non avere né massimo né minimo in \mathbf{R} ; la funzione f ha sia massimo che minimo in \mathbf{R} .

ANALISI MATEMATICA 1 - Secondo appello		14 febbraio 2020
Cognome:	Nome:	Matricola:
Corso di laurea:		

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Quale delle seguenti proprietà ha come conseguenza che la funzione $f: \mathbf{R} \mapsto \mathbf{R}$ è derivabile in $x_0 = 0$?

a esiste $a \in \mathbf{R}$ tale che $\lim_{h \to 0} \frac{f(h) - ah}{h} = 0$; b esiste $a \in \mathbf{R}$ tale che $\lim_{h \to 0} \frac{f(h) + ah}{h} = 0$; esiste $a \in \mathbf{R}$ tale che $\lim_{h \to 0} \frac{f(h) - f(0) - ah^2}{h} = 0$; d $\lim_{h \to 0} \frac{f(h) + f(0)}{h} = 0$.

- 2. $\lim_{n \to \infty} \frac{n^3 2^{-n} + 3 n n!}{2n^2 + (n+1)!} = \boxed{a} \ 2; \quad \boxed{\chi} \ 3; \quad \boxed{c} \ \frac{1}{3}; \quad \boxed{d} \ \frac{1}{2}.$
- 3. Il raggio di convergenza r > 0 della serie di potenze $\sum_{n=0}^{\infty} \frac{n^3 + 2^n}{3n^2 + 1} x^n$ è: a r = 2; $b r = \frac{1}{3}$; c r = 1; $r = \frac{1}{2}$.
- 4. Quali delle seguenti figure rappresenta il grafico vicino a x=0 del polinomio di Taylor di secondo grado e di centro $x_0=0$ della funzione $g(x)=e^{-\sin(3x)}-1$?



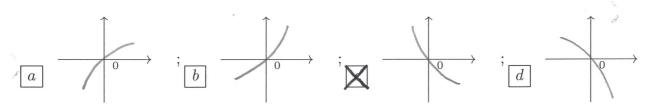
- 5. Sia $f: \mathbf{R} \mapsto \mathbf{R}$ una funzione continua con $\lim_{x \to +\infty} f(x) = 1$, $\lim_{x \to -\infty} f(x) = -1$, $f(0) = \frac{3}{2}$. Allora: a la funzione f ha sia massimo che minimo in a; b la funzione f ha massimo in a, ma non è detto che abbia minimo in a; a la funzione a ha minimo in a, ma non è detto che abbia massimo in a; a la funzione a può non avere né massimo né minimo in a.
- 6. I numeri complessi $z \in \mathbb{C}$ che soddisfano l'equazione $\overline{z} 3z + |z|^2 = 1 + 2i$ sono: $a 2 \pm \frac{\sqrt{19}}{2} + \frac{1}{2}i; \quad b \quad \frac{1}{2} \pm \frac{\sqrt{41}}{6} + \frac{1}{3}i; \quad c \quad -\frac{1}{2} \pm \frac{\sqrt{77}}{6} \frac{1}{3}i; \quad 1 \pm \frac{\sqrt{7}}{2} \frac{1}{2}i.$
- 8. Sia $f:[0,\pi]\mapsto \mathbf{R}$ una funzione continua con $f(0)=3, f(\pi)=4$. Per quale delle seguenti funzioni q(x) l'equazione f(x)=q(x) ha almeno una soluzione in $[0,\pi]$, qualunque sia la funzione f con le proprietà indicate? \mathbf{X} $q(x)=3+\cos\frac{x}{2};$ \boxed{b} $q(x)=2+\sin\frac{x}{2};$ \boxed{c} $q(x)=1+\cos\frac{x}{2};$ \boxed{d} $q(x)=1-\sin\frac{x}{2}.$

ANALISI MATEMATICA 1 - Secondo appello		14 febbraio 2020
Cognome:	Nome:	Matricola:
Corso di laurea:		

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Sia $\frac{a_0}{2} + \sum_{k=1}^{\infty} [a_k \cos(kx) + b_k \sin(kx)]$ la serie di Fourier della funzione $f(x) = e^{-2x/\pi}$ nell'intervallo $(-\pi, \pi)$. Allora $a_4 = \sum_{k=1}^{\infty} \frac{e^4 1}{2e^2(4\pi^2 + 1)};$ $b = \frac{e^2 1}{e^2(16\pi + 1)};$ $c = \frac{e^4 1}{2e(4\pi + 1)};$ $d = \frac{e^2 1}{e(16\pi^2 + 1)}.$
- 2. Sia f: R → R una funzione continua con lim f(x) = 1, lim f(x) = 1, f(-1) = 2, f(1) = 0. Allora: a la funzione f ha massimo in R, ma non è detto che abbia minimo in R;
 b la funzione f ha minimo in R, ma non è detto che abbia massimo in R;
 c la funzione f può non avere né massimo né minimo in R;
 la funzione f ha sia massimo che minimo in R.
- 3. Quale delle seguenti proprietà ha come conseguenza che la funzione $q: \mathbf{R} \mapsto \mathbf{R}$ è derivabile in $x_0 = 0$?

 $\boxed{a \text{ esiste } b \in \mathbf{R} \text{ tale che } \lim_{h \to 0} \frac{q(h) + bh}{h} = 0 ;} \quad \boxed{\mathbf{X}} \text{ esiste } b \in \mathbf{R} \text{ tale che } \lim_{h \to 0} \frac{q(h) - q(0) - bh^2}{h} = 0 ;} \quad \boxed{d} \text{ esiste } b \in \mathbf{R} \text{ tale che } \lim_{h \to 0} \frac{q(h) - bh}{h} = 0.$

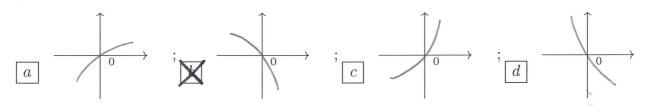
- 4. I numeri complessi $z \in \mathbb{C}$ che soddisfano l'equazione $\overline{z} 3z + |z|^2 = 1 + 2i$ sono: $a \quad \frac{1}{2} \pm \frac{\sqrt{41}}{6} + \frac{1}{3}i; \quad b \quad -\frac{1}{2} \pm \frac{\sqrt{77}}{6} \frac{1}{3}i; \quad 1 \pm \frac{\sqrt{7}}{2} \frac{1}{2}i; \quad d \quad -2 \pm \frac{\sqrt{19}}{2} + \frac{1}{2}i.$
- 5. Quali delle seguenti figure rappresenta il grafico vicino a x=0 del polinomio di Taylor di secondo grado e di centro $x_0=0$ della funzione $g(x)=e^{-\sin(3x)}-1$?



- 6. Sia $f:[0,\pi]\mapsto \mathbf{R}$ una funzione continua con $f(0)=\frac{1}{4}, f(\pi)=\frac{1}{2}$. Per quale delle seguenti funzioni q(x) l'equazione f(x)=q(x) ha almeno una soluzione in $[0,\pi]$, qualunque sia la funzione f con le proprietà indicate? $\boxed{a} q(x)=2+\sin\frac{x}{2}; \boxed{b} q(x)=1+\cos\frac{x}{2};$ $\boxed{k} q(x)=1-\sin\frac{x}{2}; \boxed{d} q(x)=3+\cos\frac{x}{2}.$
- 7. $\lim_{n \to \infty} \frac{n^2 \, 3^n + (n+1)!}{n^3 + 2 \, n \, n!} = \boxed{a} \, 3; \, \boxed{b} \, \frac{1}{3}; \, \boxed{k} \, \frac{1}{2}; \, \boxed{d} \, 2.$
- 8. Il raggio di convergenza r>0 della serie di potenze $\sum_{n=0}^{\infty}\frac{n^3+3^{-n}}{2n^2+1}x^n$ è: $a r=\frac{1}{3}$; r=1; $r=\frac{1}{2}$; r=1; r=1;

ANALISI MATEMATICA 1 - Secondo appello		14 febbraio 2020
Cognome:	Nome:	Matricola:
Corso di laurea:		

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Il raggio di convergenza r > 0 della serie di potenze $\sum_{n=0}^{\infty} \frac{n^3 + 2^n}{3n^2 + 1} x^n$ è: $r = \frac{1}{2}$; $r = \frac{$
- 2. Sia $\frac{a_0}{2} + \sum_{k=1}^{\infty} [a_k \cos(kx) + b_k \sin(kx)]$ la serie di Fourier della funzione $f(x) = e^{x/\pi}$ nell'intervallo $(-\pi, \pi)$. Allora $a_4 = a \frac{e^4 1}{2e(4\pi + 1)}$; $a \frac{e^2 1}{e(16\pi^2 + 1)}$; $a \frac{e^2 1}{e^2(16\pi + 1)}$; $a \frac{e^2 1}{e^2(16\pi + 1)}$;
- 3. Sia $f:[0,\pi]\mapsto \mathbf{R}$ una funzione continua con $f(0)=3, f(\pi)=2$. Per quale delle seguenti funzioni q(x) l'equazione f(x)=q(x) ha almeno una soluzione in $[0,\pi]$, qualunque sia la funzione f con le proprietà indicate? $\boxed{a} q(x)=1-\sin\frac{x}{2}; \boxed{b} q(x)=3+\cos\frac{x}{2};$ $\boxed{k} q(x)=2+\sin\frac{x}{2}; \boxed{d} q(x)=1+\cos\frac{x}{2}.$
- 4. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua con $\lim_{x \to +\infty} f(x) = 1$, $\lim_{x \to -\infty} f(x) = -1$, $f(0) = \frac{1}{2}$. Allora: \mathbf{X} la funzione f può non avere né massimo né minimo in \mathbf{R} ; \mathbf{b} la funzione f ha sia massimo che minimo in \mathbf{R} ; \mathbf{c} la funzione f ha massimo in \mathbf{R} , ma non è detto che abbia minimo in \mathbf{R} ; \mathbf{d} la funzione f ha minimo in \mathbf{R} , ma non è detto che abbia massimo in \mathbf{R} .
- 5. $\lim_{n \to \infty} \frac{n^3 \, 2^n + (n+1)!}{n^2 + 3 \, n \, n!} = \boxed{a} \, \frac{1}{2}; \, \boxed{b} \, 2; \, \boxed{c} \, 3; \, \boxed{\lambda} \, \frac{1}{3}.$
- 6. Quali delle seguenti figure rappresenta il grafico vicino a x=0 del polinomio di Taylor di secondo grado e di centro $x_0=0$ della funzione $g(x)=\log (1-\sin(2x))$?



- 7. Quale delle seguenti proprietà ha come conseguenza che la funzione $q: \mathbf{R} \mapsto \mathbf{R}$ è derivabile in $x_0 = 0$?
- $\boxed{a} \lim_{h \to 0} \frac{q(h) + q(0)}{h} = 0 \; ; \quad \boxed{b} \text{ esiste } b \in \mathbf{R} \text{ tale che } \lim_{h \to 0} \frac{q(h) bh}{h} = 0 \; ; \quad \boxed{c} \text{ esiste } b \in \mathbf{R}$ tale che $\lim_{h \to 0} \frac{q(h) + bh}{h} = 0 \; ; \quad \boxed{c} \text{ esiste } b \in \mathbf{R}$ tale che $\lim_{h \to 0} \frac{q(h) q(0) bh^2}{h} = 0 \; .$
 - 8. I numeri complessi $z \in \mathbb{C}$ che soddisfano l'equazione $z + 3\overline{z} + |z|^2 = 1 i$ sono: $a \quad 1 \pm \frac{\sqrt{7}}{2} \frac{1}{2}i; \quad 2 \pm \frac{\sqrt{19}}{2} + \frac{1}{2}i; \quad c \quad \frac{1}{2} \pm \frac{\sqrt{41}}{6} + \frac{1}{3}i; \quad d \quad -\frac{1}{2} \pm \frac{\sqrt{77}}{6} \frac{1}{3}i.$

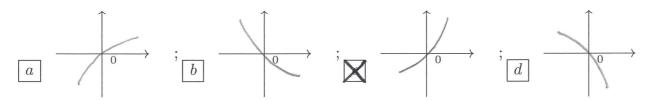
ANALISI MATEMATICA 1 - Secondo appello		14 febbraio 2020
Cognome:	Nome:	Matricola:
Corso di laurea:		

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua con $\lim_{x \to +\infty} f(x) = 1$, $\lim_{x \to -\infty} f(x) = 1$, $f(0) = \frac{1}{2}$. Allora:

 [a] la funzione f può non avere né massimo né minimo in \mathbf{R} ; [b] la funzione f ha sia massimo che minimo in \mathbf{R} ; [c] la funzione f ha massimo in \mathbf{R} , ma non è detto che abbia minimo in \mathbf{R} ; [la funzione f ha minimo in \mathbf{R} , ma non è detto che abbia massimo in \mathbf{R} .
- 2. I numeri complessi $z \in \mathbb{C}$ che soddisfano l'equazione $z 2\overline{z} + |z|^2 = 1 + i$ sono: $a \quad 1 \pm \frac{\sqrt{7}}{2} - \frac{1}{2}i; \quad b \quad -2 \pm \frac{\sqrt{19}}{2} + \frac{1}{2}i; \quad \mathbf{Z} \quad \frac{1}{2} \pm \frac{\sqrt{41}}{6} + \frac{1}{3}i; \quad d \quad -\frac{1}{2} \pm \frac{\sqrt{77}}{6} - \frac{1}{3}i.$
- 3. $\lim_{n \to \infty} \frac{n^3 \, 2^n + (n+1)!}{n^2 + 3 \, n \, n!} = \boxed{a} \, \frac{1}{2}; \, \boxed{b} \, 2; \, \boxed{c} \, 3; \, \boxed{\lambda} \, \frac{1}{3}.$
- 4. Il raggio di convergenza r>0 della serie di potenze $\sum_{n=0}^{\infty}\frac{n^3+3^{-n}}{2n^2+1}x^n$ è: $a r=\frac{1}{2}$; b r=2; $c r=\frac{1}{3}$; r=1.
- 5. Sia $f:[0,\pi] \mapsto \mathbf{R}$ una funzione continua con $f(0)=\frac{1}{4}, f(\pi)=\frac{1}{2}$. Per quale delle seguenti funzioni q(x) l'equazione f(x)=q(x) ha almeno una soluzione in $[0,\pi]$, qualunque sia la funzione f con le proprietà indicate? $q(x)=1-\sin\frac{x}{2}; \quad \boxed{b} \ q(x)=3+\cos\frac{x}{2};$ $\boxed{c} \ q(x)=2+\sin\frac{x}{2}; \quad \boxed{d} \ q(x)=1+\cos\frac{x}{2}.$
- 6. Quale delle seguenti proprietà ha come conseguenza che la funzione $q: \mathbf{R} \mapsto \mathbf{R}$ è derivabile in $x_0 = 0$?

 $\boxed{a} \lim_{h \to 0} \frac{q(h) + q(0)}{h} = 0 ; \quad \boxed{b} \text{ esiste } b \in \mathbf{R} \text{ tale che } \lim_{h \to 0} \frac{q(h) - bh}{h} = 0 ; \quad \boxed{c} \text{ esiste } b \in \mathbf{R}$ tale che $\lim_{h \to 0} \frac{q(h) + bh}{h} = 0 ; \quad \boxed{\mathbf{K}} \text{ esiste } b \in \mathbf{R} \text{ tale che } \lim_{h \to 0} \frac{q(h) - q(0) - bh^2}{h} = 0 .$

7. Quali delle seguenti figure rappresenta il grafico vicino a x=0 del polinomio di Taylor di secondo grado e di centro $x_0=0$ della funzione $g(x)=e^{\sin(2x)}-1$?



8. Sia $\frac{a_0}{2} + \sum_{k=1}^{\infty} [a_k \cos(kx) + b_k \sin(kx)]$ la serie di Fourier della funzione $f(x) = e^{x/\pi}$ nell'intervallo $(-\pi, \pi)$. Allora $a_4 = a$ $\frac{e^4 - 1}{2e(4\pi + 1)}$; $\frac{e^2 - 1}{e(16\pi^2 + 1)}$; $\frac{e^2 - 1}{2e^2(4\pi^2 + 1)}$; $\frac{e^2 - 1}{e^2(16\pi + 1)}$.

ANALISI MATEMATICA 1 - Secondo appello		14 febbraio 2020
Cognome:	Nome:	Matricola:
Corso di laurea:		

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Sia $f:[0,\pi] \mapsto \mathbf{R}$ una funzione continua con $f(0)=\frac{3}{2}, f(\pi)=2$. Per quale delle seguenti funzioni q(x) l'equazione f(x)=q(x) ha almeno una soluzione in $[0,\pi]$, qualunque sia la funzione f con le proprietà indicate? $q(x)=1+\cos\frac{x}{2};$ $p(x)=1-\sin\frac{x}{2};$ $p(x)=3+\cos\frac{x}{2};$ $p(x)=2+\sin\frac{x}{2}.$
- 2. Quale delle seguenti proprietà ha come conseguenza che la funzione $f: \mathbf{R} \mapsto \mathbf{R}$ è derivabile in $x_0 = 0$?

ste $a \in \mathbf{R}$ tale che $\lim_{h \to 0} \frac{f(h) - f(0) - ah^2}{h} = 0$; $\boxed{b} \lim_{h \to 0} \frac{f(h) + f(0)}{h} = 0$; \boxed{c} esiste $a \in \mathbf{R}$ tale che $\lim_{h \to 0} \frac{f(h) - ah}{h} = 0$; \boxed{d} esiste $a \in \mathbf{R}$ tale che $\lim_{h \to 0} \frac{f(h) + ah}{h} = 0$.

- 3. I numeri complessi $z \in \mathbb{C}$ che soddisfano l'equazione $z + 3\overline{z} + |z|^2 = 1 i$ sono: $\boxed{a} \frac{1}{2} \pm \frac{\sqrt{77}}{6} \frac{1}{3}i; \quad \boxed{b} \ 1 \pm \frac{\sqrt{7}}{2} \frac{1}{2}i; \quad \boxed{d} \ -2 \pm \frac{\sqrt{19}}{2} + \frac{1}{2}i; \quad \boxed{d} \ \frac{1}{2} \pm \frac{\sqrt{41}}{6} + \frac{1}{3}i.$
- 4. $\lim_{n \to \infty} \frac{n^2 \, 3^n + (n+1)!}{n^3 + 2 \, n \, n!} = \boxed{a} \, \frac{1}{3}; \, \boxed{\chi} \, \frac{1}{2}; \, \boxed{c} \, 2; \, \boxed{d} \, 3.$
- 6. Sia f: R → R una funzione continua con lim f(x) = 1, lim f(x) = -1, f(0) = 1/2. Allora:
 a la funzione f ha minimo in R, ma non è detto che abbia massimo in R; I la funzione f può non avere né massimo né minimo in R; c la funzione f ha sia massimo che minimo in R; d la funzione f ha massimo in R, ma non è detto che abbia minimo in R.
- 7. Il raggio di convergenza r>0 della serie di potenze $\sum_{n=0}^{\infty} \frac{n^2+2^{-n}}{3n^3+1} x^n$ è: x=1; x=1;
- 8. Quali delle seguenti figure rappresenta il grafico vicino a x = 0 del polinomio di Taylor di secondo grado e di centro $x_0 = 0$ della funzione $g(x) = \log (\sin(2x) + 1)$?

