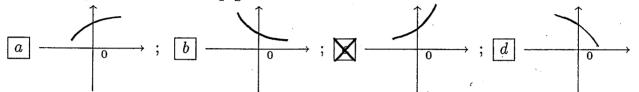
ANALISI MATEMATICA 1		16 luglio 2010
Cognome:	Nome:	Matricola:

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Il grafico della funzione $f(x) = \frac{2x+1}{1-x^2}$ per x vicino a 0 è:



- 2. L'insieme dei valori del parametro $\alpha > 0$ per cui l'integrale $\int_0^1 \frac{e^{2x^2} 1}{\sqrt{x^{2+\alpha}(1+x^{\alpha})}} dx$ è un integrale improprio e come integrale improprio è convergente è: $\boxed{a} \ 1 < \alpha < 2; \quad \boxed{b} \ 1 < \alpha < 3;$ $\boxed{2 < \alpha < 4} \ ; \quad \boxed{d} \ \frac{1}{2} < \alpha < \frac{3}{2}.$
- 3. Sia f una funzione continua tale che $\int_1^3 f(x) dx = 5$. Allora esiste un numero $x_0 \in [1,3]$ tale che: $f(x_0) > 2$; $f(x_0) < 1$;
- 4. La retta perpendicolare al grafico di $y=-4x^2+5x$ nel punto di ascissa x=1 è: a $y=\frac{1}{2}x+\frac{1}{2};$ b $y=-\frac{1}{3}x+\frac{4}{3};$ $y=\frac{1}{3}x+\frac{2}{3};$ $y=-\frac{1}{4}x+\frac{5}{4}.$
- 5. L'insieme dove la funzione

$$G(x) = \int_0^{2x^2} \frac{1-t}{t^3+2} dt$$

è strettamente crescente è: $\boxed{a} -1 < x < 0, \ x > 1; \quad \boxed{b} \ x < -1, \ 0 < x < 1; \quad \boxed{x} < -\frac{1}{\sqrt{2}}, \ 0 < x < \frac{1}{\sqrt{2}}; \quad \boxed{d} \ -\frac{1}{\sqrt{2}} < x < 0, \ x > \frac{1}{\sqrt{2}}.$

- 6. La soluzione dell'equazione $\frac{\overline{z}}{1+i} z = 1-i$ è: $\boxed{a} \ 3-5i; \ \boxed{b} \ -1-i; \ \boxed{d} \ 2-4i.$
- 7. Sia f una funzione derivabile con derivata continua e tale che $f(1)=0, \lim_{x\to +\infty} f(x)=1.$ Allora $\int_0^{+\infty} f(e^{2x})e^{-3x} dx = \left[\begin{array}{c} \frac{2}{3} \int_0^{+\infty} f'(e^{2x})e^{-x} dx \\ \end{array} \right]; \quad \left[\begin{array}{c} b \end{array} \right] 2 \int_0^{+\infty} f'(e^{2x})e^x dx \qquad ; \quad \left[\begin{array}{c} b \end{array} \right] 2 \int_0^{+\infty} f'(e^{2x})e^x dx \qquad ; \quad \left[\begin{array}{c} c \end{array} \right] \frac{1}{2} \int_0^{+\infty} f'(e^{2x})e^{-2x} dx \qquad ; \quad \left[\begin{array}{c} c \end{array} \right] \frac{1}{2} \int_0^{+\infty} f'(e^{2x})e^{-2x} dx \qquad ; \quad \left[\begin{array}{c} c \end{array} \right] \frac{1}{2} \int_0^{+\infty} f'(e^{2x})e^{-2x} dx \qquad ; \quad \left[\begin{array}{c} c \end{array} \right] \frac{1}{2} \int_0^{+\infty} f'(e^{2x})e^{-2x} dx \qquad ; \quad \left[\begin{array}{c} c \end{array} \right] \frac{1}{2} \int_0^{+\infty} f'(e^{2x})e^{-2x} dx \qquad ; \quad \left[\begin{array}{c} c \end{array} \right] \frac{1}{2} \int_0^{+\infty} f'(e^{2x})e^{-2x} dx \qquad ; \quad \left[\begin{array}{c} c \end{array} \right] \frac{1}{2} \int_0^{+\infty} f'(e^{2x})e^{-2x} dx \qquad ; \quad \left[\begin{array}{c} c \end{array} \right] \frac{1}{2} \int_0^{+\infty} f'(e^{2x})e^{-2x} dx \qquad ; \quad \left[\begin{array}{c} c \end{array} \right] \frac{1}{2} \int_0^{+\infty} f'(e^{2x})e^{-2x} dx \qquad ; \quad \left[\begin{array}{c} c \end{array} \right] \frac{1}{2} \int_0^{+\infty} f'(e^{2x})e^{-2x} dx \qquad ; \quad \left[\begin{array}{c} c \end{array} \right] \frac{1}{2} \int_0^{+\infty} f'(e^{2x})e^{-2x} dx \qquad ; \quad \left[\begin{array}{c} c \end{array} \right] \frac{1}{2} \int_0^{+\infty} f'(e^{2x})e^{-2x} dx \qquad ; \quad \left[\begin{array}{c} c \end{array} \right] \frac{1}{2} \int_0^{+\infty} f'(e^{2x})e^{-2x} dx \qquad ; \quad \left[\begin{array}{c} c \end{array} \right] \frac{1}{2} \int_0^{+\infty} f'(e^{2x})e^{-2x} dx \qquad ; \quad \left[\begin{array}{c} c \end{array} \right] \frac{1}{2} \int_0^{+\infty} f'(e^{2x})e^{-2x} dx \qquad ; \quad \left[\begin{array}{c} c \end{array} \right] \frac{1}{2} \int_0^{+\infty} f'(e^{2x})e^{-2x} dx \qquad ; \quad \left[\begin{array}{c} c \end{array} \right] \frac{1}{2} \int_0^{+\infty} f'(e^{2x})e^{-2x} dx \qquad ; \quad \left[\begin{array}{c} c \end{array} \right] \frac{1}{2} \int_0^{+\infty} f'(e^{2x})e^{-2x} dx \qquad ; \quad \left[\begin{array}{c} c \end{array} \right] \frac{1}{2} \int_0^{+\infty} f'(e^{2x})e^{-2x} dx \qquad ; \quad \left[\begin{array}{c} c \end{array} \right] \frac{1}{2} \int_0^{+\infty} f'(e^{2x})e^{-2x} dx \qquad ; \quad \left[\begin{array}{c} c \end{array} \right] \frac{1}{2} \int_0^{+\infty} f'(e^{2x})e^{-2x} dx \qquad ; \quad \left[\begin{array}{c} c \end{array} \right] \frac{1}{2} \int_0^{+\infty} f'(e^{2x})e^{-2x} dx \qquad ; \quad \left[\begin{array}{c} c \end{array} \right] \frac{1}{2} \int_0^{+\infty} f'(e^{2x})e^{-2x} dx \qquad ; \quad \left[\begin{array}{c} c \end{array} \right] \frac{1}{2} \int_0^{+\infty} f'(e^{2x})e^{-2x} dx \qquad ; \quad \left[\begin{array}{c} c \end{array} \right] \frac{1}{2} \int_0^{+\infty} f'(e^{2x})e^{-2x} dx \qquad ; \quad \left[\begin{array}{c} c \end{array} \right] \frac{1}{2} \int_0^{+\infty} f'(e^{2x})e^{-2x} dx \qquad ; \quad \left[\begin{array}{c} c \end{array} \right] \frac{1}{2} \int_0^{+\infty} f'(e^{2x})e^{-2x} dx \qquad ; \quad \left[\begin{array}{c} c \end{array} \right] \frac{1}{2} \int_0^{+\infty} f'(e^{2x})e^{-2x} dx \qquad ; \quad \left[\begin{array}{c} c \end{array} \right] \frac{1}{2} \int_0^{+\infty} f'(e^{2x})e^{-2x} dx \qquad ; \quad \left[\begin{array}{c} c \end{array} \right] \frac{1}{2} \int_0^{+\infty} f'(e^{2x})e^{-$
- 8. Sia g una funzione continua tale che $g(1)=-3,\ g(2)=-2.$ Allora esiste una soluzione dell'equazione: a $g(x)=3-3x+3x^2-x^3;$ b $g(x)=\frac{1}{2}x^3-3;$ $g(x)=1-6x+6x^2-2x^3;$ d $g(x)=x^3-1.$

1. (6 punti) Per ogni valore del parametro $\alpha \in \mathbf{R}$ si risolva il problema di Cauchy:

$$\begin{cases} y'' + 2y' + y = 3e^{2x} \\ y(0) = 0 \\ y'(0) = \alpha . \end{cases}$$

Esistono valori di α per cui $\lim_{x \to +\infty} y(x) = 0$?

Il problema nignarda un'aquanione lineare, del Tordine, a coefficienti costanti, non-onogenea.

Per travare la solurione dell'omagener si considerans le radici del polinamio associato:

$$r^2 + 2r + 1 = 0 \Rightarrow r = -1$$
 (doppia).

La solurione generale dell'omogenes è quindi:

$$y_0(x) = c_1 e^{-x} + c_2 x e^{-x}$$

La salunione ponticolare della non-omogenea ha la forma $y_*(x) = Ae^{2x}$. Si ha $y_*' = 2Ae^{2x}$, $y_*'' = 4Ae^{2x}$, durque

$$y_{x}'' + 2y_{x}' + y_{x} = (4A + 4A + A)e^{2x} = 3e^{2x}$$

aioè A= 1/3 e /4(x) = 1/3e2x.

La solusione generale della non-omogena è dunque:

$$\gamma(x) = c_1 e^{-x} + c_2 x e^{-x} + \frac{1}{3} e^{2x}$$

Imponendo i dati di Canolay si ha (avendo calculato $y'=-c_1e^{-x}+c_2e^{-x}-c_2xe^{-x}+\frac{2}{3}e^{2x}$):

$$0 = \gamma(0) = c_1 + \frac{1}{3} \implies c_1 = -\frac{1}{3}$$

$$d = \gamma'(0) = -c_1 + c_2 + \frac{2}{3} \implies c_2 = d + c_1 - \frac{2}{3} = d - 1.$$

La solurione del problema di Candy è

$$\gamma(x) = -\frac{1}{3}e^{-x} + (d-1)xe^{-x} + \frac{1}{3}e^{2x}$$

Sicone $xe^{-x} \xrightarrow{} 0$, y si ha semple $y(x) \xrightarrow{} +\infty$, e hon esisteno valori di α per α in $y(x) \xrightarrow{} 0$.

2. (6 punti) Sia f definita da

$$f(x) = \frac{x^2 + 2x + 9}{x^2 + 3x + 9}.$$

Determinato il suo insieme di definizione, trovate:

- se esistono, i massimi e minimi locali ed assoluti di f nel suo insieme di definizione;
- i massimi e minimi assoluti di f in [2, 4].

La funcione è definita per x²+3x+9 ≠0. Cercando l'eventuale annullamento, si ha

 $x^2+3x+9=0$ for $x=\frac{-3\mp\sqrt{9-36}}{2}$, radici non reali.

Quindi x2+3x+9>0 per ogni x ER, e l'insieme di definitione di f(x) è R.

Poi si ha lim f(x) = 1, lim f(x) = 1; la derivata vale $x \to +\infty$

$$f'(x) = \frac{(2x+2)(x^2+3x+9) - (x^2+2x+9)(2x+3)}{(x^2+3x+9)^2} = \frac{x^2-9}{(x^2+3x+9)^2}$$

Quindi f è orescente que $x^2-9>0$, cioè $\times <-3$ e $\times >3$; nivece è decrescente que $-3<\times<3$. Dunque $\times =-3$ è un punto di massimo relativo (e si ha f(-3)=4/3), $\times =3$ è un punto di minimo relativo (e si ha f(3)=8/9).

Nell' nitervallo [2,4] c'è un solo pourto di annullamento della derivata (il punto x=3), e la funcione decresce per 2 < x < 3 e curce per 3 < x < 4. Quindi x=3 è il punito di minimo anoluto, mentre occore confrontare f(2) ed f(4) per vesificare qual è il manimo anoluto. Si ha $f(2)=\frac{17}{19}$, $f(4)=\frac{33}{37}$. Siceone $33 \times 19=627 < 629=37 \times 17$, si ha f(4) < f(2), e'il massimo anoluto si ha per x=2 e vale 17/19.

Siccone $f(-3) = 4/3 > 1 = \lim_{x \to +\infty} f(x)$, il punto -3 è un punto di manimo anoluto pu f ù \mathbb{R} : $\max_{x \in \mathbb{R}} f(x) = 4/3$. Siccone $f(3) = 8/9 < 1 = \lim_{x \to -\infty} f(x)$, il punto 3 è un punto di minimo anoluto pu f ù \mathbb{R} : $\min_{x \in \mathbb{R}} f(x) = 8/9$.

3. (6 punti) Si determini per quali valori del parametro $x \neq -2$ la serie

$$\sum_{k=1}^{\infty} \frac{2^k}{k^2} \left(\frac{1+x}{2+x} \right)^k .$$

è convergente.

Cerchiamo la convergensa assoluta con il criterio del rapporto.

$$\frac{2^{k+1}}{\frac{(k+1)^2}{k^2}\left|\frac{1+x}{2+x}\right|^{k+1}} = 2\frac{k^2}{(k+1)^2}\left|\frac{4+x}{2+x}\right| \rightarrow 2\frac{|1+x|}{|2+x|}.$$

Se $2\frac{|1+x|}{|2+x|} \le 1$ si ha convergenze anoluta. Questo accade quando $|2+2x| \le |2+x|$, cisè $-|2+x| \le 2+2x \le |2+x|$.

Se X <- 2, questo significa

2+x < 2+2 x < -2-x, cioè x>0 e x<-4/3, che è impossibile.

In conclusione, abbiano convergence anolute (e quindi convergence semplite) per -4/3<0.

Se $\times (-4/3)$ oppme $\times > 0$ il limite del criterio del rapporto risulta $\frac{2|1+x|}{|2+x|} > 1$, durque $|a_k| + 0$ e $a_k + 0$, per cui la seine mon conveye. Se $\times (-4/3)$, la seine diventa $\sum_{k=1}^{\infty} \frac{2^k}{k^2} \frac{(-1)^k}{2^k} = \sum_{k=1}^{\infty} (-1)^k \frac{1}{k^2}$, che è amolu $\frac{1}{2^k} = \frac{1}{2^k} \frac{1}{2^k} = \frac{1}{2^k} \frac{1}{2^k} = \frac{1}{2^k} \frac{1}{2^k} \frac{1}{2^k} = \frac{1}{2^k} \frac{1}{2^k} \frac{1}{2^k} = \frac{1}{2^k} \frac{1}{2^k} \frac{1}{2^k} = \frac{1}{2^k} \frac{1}{2^$

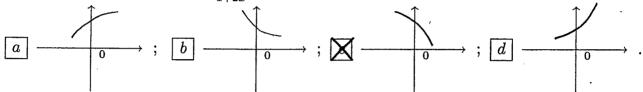
tamente convergente, dunque convergente.

Se x=0, la seine diventa $\sum_{k=1}^{\infty} \frac{2^k}{k^2} \frac{1}{2^k} = \sum_{k=1}^{\infty} \frac{1}{k^2}$, che è convergente.

La seine è quihodi convergente per -4/3 ≤ × ≤ 0.

ANALISI MATEMATICA 1		16 luglio 2010
Cognome:	Nome:	Matricola:

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Sia g una funzione continua tale che $g(1)=-\frac{3}{4},\ g(2)=3$. Allora esiste una soluzione dell'equazione: a $g(x)=1-6x+6x^2-2x^3$; b $g(x)=x^3-1$; $g(x)=3-3x+3x^2-x^3$; d $g(x)=\frac{1}{2}x^3-3$.
- 2. Il grafico della funzione $f(x) = \frac{1-2x}{1+2x^2}$ per x vicino a 0 è:



- 3. La soluzione dell'equazione $\frac{\overline{z}}{1-i}+z=2-i$ è: $\boxed{a}-4+2i;$ \boxed{b} 2-4i; \boxed{x} 3-5i; \boxed{d} -1-i.
- 4. L'insieme dei valori del parametro $\alpha > 0$ per cui l'integrale $\int_0^1 \frac{1 \cos(2x)}{x^{1+\alpha}(2+x^{\alpha})} dx$ è un integrale improprio e come integrale improprio è convergente è: $\boxed{a} \ 2 < \alpha < 4 \ ; \quad \boxed{b} \ \frac{1}{2} < \alpha < \frac{3}{2};$ $\boxed{\lambda} \ 1 < \alpha < 2; \quad \boxed{d} \ 1 < \alpha < 3.$
- 5. Sia f una funzione derivabile con derivata continua e tale che f(1)=0, $\lim_{x\to +\infty} f(x)=1$. Allora $\int_0^{+\infty} f(e^{2x})e^{-x} dx = \begin{bmatrix} a \end{bmatrix} \frac{1}{2} \int_0^{+\infty} f'(e^{2x})e^{-2x} dx$; $\begin{bmatrix} b \end{bmatrix} \int_0^{+\infty} f'(e^{2x}) dx$; $\begin{bmatrix} c \end{bmatrix} \frac{2}{3} \int_0^{+\infty} f'(e^{2x})e^{-x} dx$; $\begin{bmatrix} c \end{bmatrix} 2 \int_0^{+\infty} f'(e^{2x})e^{-x} dx$.
- 6. L'insieme dove la funzione

$$G(x) = \int_0^{2x^2} \frac{t-2}{t^3+3} dt$$

è strettamente crescente è: $\boxed{a} \ x < -\frac{1}{\sqrt{2}}, \ 0 < x < \frac{1}{\sqrt{2}}; \quad \boxed{b} \ -\frac{1}{\sqrt{2}} < x < 0, \ x > \frac{1}{\sqrt{2}};$ $\boxed{x < -1, \ 0 < x < 1}.$

- 7. Sia f una funzione continua tale che $\int_2^4 f(x) dx = 3$. Allora esiste un numero $x_0 \in [2,4]$ tale che: $f(x_0) < 2$; $f(x_0) > 3$; $f(x_0) > 3$; $f(x_0) > 2$; $f(x_0) < 1$.
- 8. La retta perpendicolare al grafico di $y=-3x^2+4x$ nel punto di ascissa x=1 è: $\boxed{a} \ y=\frac{1}{3}x+\frac{2}{3}; \quad \boxed{b} \ y=-\frac{1}{4}x+\frac{5}{4}; \quad \boxed{x} \ y=\frac{1}{2}x+\frac{1}{2}; \quad \boxed{d} \ y=-\frac{1}{3}x+\frac{4}{3}.$

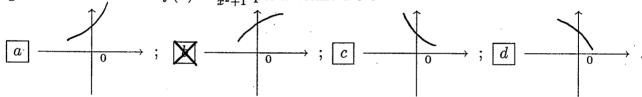
ANALISI MATEMATICA 1		16 luglio 2010
Cognome:	Nome:	Matricola:

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Sia f una funzione derivabile con derivata continua e tale che f(1)=0, $\lim_{x\to +\infty} f(x)=1$. Allora $\int_0^{+\infty} f(e^{2x})e^{-2x} dx = \begin{bmatrix} a \end{bmatrix} 2 \int_0^{+\infty} f'(e^{2x})e^x dx$; $\begin{bmatrix} b \end{bmatrix} \frac{1}{2} \int_0^{+\infty} f'(e^{2x})e^{-2x} dx$; $\begin{bmatrix} d \end{bmatrix} \frac{2}{3} \int_0^{+\infty} f'(e^{2x})e^{-x} dx$.
- 2. L'insieme dove la funzione

$$G(x) = \int_0^{x^2} \frac{2t - 1}{2 + t^3} dt$$

è strettamente crescente è: $a \ x < -1, \ 0 < x < 1;$ $b \ x < -\frac{1}{\sqrt{2}}, \ 0 < x < \frac{1}{\sqrt{2}};$ $c \ -\frac{1}{\sqrt{2}} < x < 0, \ x > \frac{1}{\sqrt{2}};$ $c \ d \ -1 < x < 0, \ x > 1.$

3. Il grafico della funzione $f(x) = \frac{3x+1}{x^2+1}$ per x vicino a 0 è:



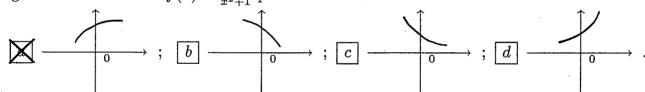
- 4. La soluzione dell'equazione $\frac{z}{1+i} + \overline{z} = i+1$ è: $\boxed{a} -1 i; \boxed{b} -4 + 2i; \boxed{x} 2 4i;$ $\boxed{d} 3 5i.$
- 5. La retta perpendicolare al grafico di $y=3x^2-2x$ nel punto di ascissa x=1 è: $\boxed{a} \ y=-\frac{1}{3}x+\frac{4}{3}; \quad \boxed{b} \ y=\frac{1}{3}x+\frac{2}{3}; \quad \boxed{x} \ y=-\frac{1}{4}x+\frac{5}{4}; \quad \boxed{d} \ y=\frac{1}{2}x+\frac{1}{2}.$
- 6. Sia g una funzione continua tale che $g(1)=3,\ g(2)=4.$ Allora esiste una soluzione dell'equazione: a $g(x)=\frac{1}{2}x^3-3;$ b $g(x)=1-6x+6x^2-2x^3;$ $g(x)=x^3-1;$ d $g(x)=3-3x+3x^2-x^3.$
- 7. L'insieme dei valori del parametro $\alpha > 0$ per cui l'integrale $\int_0^1 \frac{\sin(2\sqrt{x})}{x^{\alpha}(2-x^{\alpha})} dx$ è un integrale improprio e come integrale improprio è convergente è: \boxed{a} $1 < \alpha < 3$; \boxed{b} $2 < \alpha < 4$; $\boxed{\sum}$ $\frac{1}{2} < \alpha < \frac{3}{2}$; \boxed{d} $1 < \alpha < 2$.
- 8. Sia f una funzione continua tale che $\int_1^4 f(x) dx = 5$. Allora esiste un numero $x_0 \in [1, 4]$ tale che: a $f(x_0) < 1$; $f(x_0) < 2$; $f(x_0) > 3$; $f(x_0) > 3$.

ANALISI MATEMATICA 1		16 luglio 2010
Cognome:	Nome:	Matricola:

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. La retta perpendicolare al grafico di $y=2x^2-x$ nel punto di ascissa x=1 è: $\boxed{a} \ y=\frac{1}{2}x+\frac{1}{2}; \ \boxed{x} \ y=-\frac{1}{3}x+\frac{4}{3}; \ \boxed{c} \ y=\frac{1}{3}x+\frac{2}{3}; \ \boxed{d} \ y=-\frac{1}{4}x+\frac{5}{4}.$
- 2. Sia g una funzione continua tale che $g(1)=-\frac{3}{4},\ g(2)=3$. Allora esiste una soluzione dell'equazione: $g(x)=3-3x+3x^2-x^3;\ b\ g(x)=\frac{1}{2}x^3-3;\ c\ g(x)=1-6x+6x^2-2x^3;\ d\ g(x)=x^3-1.$
- 3. L'insieme dove la funzione

$$G(x) = \int_0^{2x^2} \frac{t-2}{t^3+3} dt$$

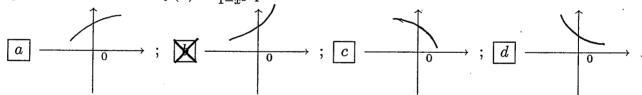
4. Il grafico della funzione $f(x) = \frac{3x+1}{x^2+1}$ per x vicino a 0 è:



- 5. Sia f una funzione continua tale che $\int_1^3 f(x) dx = 5$. Allora esiste un numero $x_0 \in [1,3]$ tale che: $f(x_0) > 2$; $f(x_0) < 1$;
- 6. Sia f una funzione derivabile con derivata continua e tale che f(1)=0, $\lim_{x\to +\infty}f(x)=1$. Allora $\int_0^{+\infty}f(e^{2x})e^{-x}\,dx=\begin{bmatrix}a&\frac{2}{3}\int_0^{+\infty}f'(e^{2x})e^{-x}\,dx\\ \vdots&d&\int_0^{+\infty}f'(e^{2x})e^{-2x}\,dx\end{bmatrix};\quad X=0$; X=0; X=0
- 7. La soluzione dell'equazione $\frac{\overline{z}}{1+i}-z=1-i$ è: \boxed{a} 3-5i; \boxed{b} -1-i; \boxed{A} -4+2i; \boxed{d} 2-4i.
- 8. L'insieme dei valori del parametro $\alpha>0$ per cui l'integrale $\int_0^1 \frac{e^{2x^2}-1}{\sqrt{x^{2+\alpha}}(1+x^{\alpha})} \, dx \text{ è un integrale improprio è convergente è: } \boxed{a} \ 1<\alpha<2; \boxed{b} \ 1<\alpha<3;$ $\boxed{2<\alpha<4} ; \boxed{d} \ \frac{1}{2}<\alpha<\frac{3}{2}.$

ANALISI MATEMATICA 1		16 luglio 2010
Cognome:	Nome:	Matricola:

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. La soluzione dell'equazione $\frac{\overline{z}}{1-i}+z=2-i$ è: $\boxed{a}-1-i;$ $\boxed{b}-4+2i;$ \boxed{c} 2-4i; $\boxed{3-5i}$.
- 2. Sia f una funzione continua tale che $\int_1^5 f(x) dx = 9$. Allora esiste un numero $x_0 \in [1, 5]$ tale che: a $f(x_0) < 1$; b $f(x_0) < 2$; c $f(x_0) > 3$; $f(x_0) > 2$.
- 3. La retta perpendicolare al grafico di $y=-3x^2+4x$ nel punto di ascissa x=1 è: $\boxed{a} \ y=-\frac{1}{3}x+\frac{4}{3}; \quad \boxed{b} \ y=\frac{1}{3}x+\frac{2}{3}; \quad \boxed{c} \ y=-\frac{1}{4}x+\frac{5}{4}; \quad \boxed{x} \ y=\frac{1}{2}x+\frac{1}{2}.$
- 4. Sia f una funzione derivabile con derivata continua e tale che f(1)=0, $\lim_{x\to +\infty}f(x)=1$. Allora $\int_0^{+\infty}f(e^{2x})e^{-4x}\,dx=\begin{bmatrix}a&2\int_0^{+\infty}f'(e^{2x})e^x\,dx\\ \end{bmatrix}$; $\sum_{x\to +\infty}\frac{1}{2}\int_0^{+\infty}f'(e^{2x})e^{-2x}\,dx$; ; $\sum_{x\to +\infty}\frac{1}{2}\int_0^{+\infty}f'(e^{2x})e^{-2x}\,dx$; ; $\sum_{x\to +\infty}\frac{1}{2}\int_0^{+\infty}f'(e^{2x})e^{-2x}\,dx$.
- 5. Il grafico della funzione $f(x) = \frac{2x+1}{1-x^2}$ per x vicino a 0 è:



- 6. L'insieme dei valori del parametro $\alpha > 0$ per cui l'integrale $\int_0^1 \frac{1 \cos(2x)}{x^{1 + \alpha}(2 + x^{\alpha})} dx$ è un integrale improprio e come integrale improprio è convergente è: $\boxed{a} \ 1 < \alpha < 3;$ $\boxed{b} \ 2 < \alpha < 4;$ $\boxed{c} \ \frac{1}{2} < \alpha < \frac{3}{2};$ $\boxed{k} \ 1 < \alpha < 2.$
- 7. Sia g una funzione continua tale che $g(1)=3,\ g(2)=4.$ Allora esiste una soluzione dell'equazione: a $g(x)=\frac{1}{2}x^3-3;$ b $g(x)=1-6x+6x^2-2x^3;$ $g(x)=x^3-1;$ $g(x)=3-3x+3x^2-x^3.$
- 8. L'insieme dove la funzione

$$G(x) = \int_0^{x^2} \frac{2t - 1}{2 + t^3} dt$$

è strettamente crescente è: $a \ x < -1, \ 0 < x < 1;$ $b \ x < -\frac{1}{\sqrt{2}}, \ 0 < x < \frac{1}{\sqrt{2}};$ $c \ -\frac{1}{\sqrt{2}} < x < 0, \ x > \frac{1}{\sqrt{2}};$ $c \ d \ -1 < x < 0, \ x > 1.$

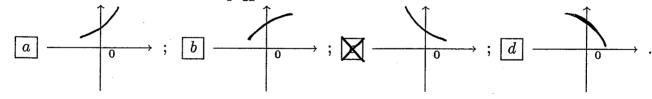
ANALISI MATEMATICA 1		16 luglio 2010
Cognome:	Nome:	Matricola:

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. L'insieme dove la funzione

$$G(x) = \int_0^{x^2} \frac{1 - t}{1 + t^3} dt$$

è strettamente crescente è: $\boxed{a} - \frac{1}{\sqrt{2}} < x < 0, \ x > \frac{1}{\sqrt{2}}; \quad \boxed{b} -1 < x < 0, \ x > 1;$ $\boxed{X} < -1, \ 0 < x < 1; \quad \boxed{d} \ x < -\frac{1}{\sqrt{2}}, \ 0 < x < \frac{1}{\sqrt{2}}.$

- 2. La soluzione dell'equazione $\frac{z}{1-i} \overline{z} = 1 2i$ è: $\boxed{a} \ 2 4i; \ \boxed{b} \ 3 5i; \ \boxed{-1 i;}$ $\boxed{d} \ -4 + 2i.$
- 3. L'insieme dei valori del parametro $\alpha > 0$ per cui l'integrale $\int_0^1 \frac{\log(1+3\sqrt{x})}{\sqrt{x^\alpha}(3-x^\alpha)} \, dx \text{ è un integrale improprio e come integrale improprio è convergente è:} \quad \boxed{a} \quad \frac{1}{2} < \alpha < \frac{3}{2}; \quad \boxed{b} \quad 1 < \alpha < 2;$ $\boxed{A} \quad 1 < \alpha < 3; \quad \boxed{d} \quad 2 < \alpha < 4 \ .$
- 4. Sia f una funzione continua tale che $\int_1^5 f(x) dx = 9$. Allora esiste un numero $x_0 \in [1, 5]$ tale che: a $f(x_0) > 3$; $x \in [1, 5]$ $f(x_0) < 1$; $x \in [1, 5]$ $f(x_0) < 1$; $x \in [1, 5]$ $f(x_0) < 1$;
- 5. Sia g una funzione continua tale che $g(1)=-\frac{1}{2},\ g(2)=-1$. Allora esiste una soluzione dell'equazione: a $g(x)=x^3-1;$ b $g(x)=3-3x+3x^2-x^3;$ $g(x)=\frac{1}{2}x^3-3;$ $g(x)=1-6x+6x^2-2x^3$.
- 6. Il grafico della funzione $f(x) = \frac{1-x}{1-2x^2}$ per x vicino a 0 è:



- 7. La retta perpendicolare al grafico di $y=2x^2-x$ nel punto di ascissa x=1 è: $\boxed{a} \ y=-\frac{1}{4}x+\frac{5}{4}; \ \boxed{b} \ y=\frac{1}{2}x+\frac{1}{2}; \ \boxed{x} \ y=-\frac{1}{3}x+\frac{4}{3}; \ \boxed{d} \ y=\frac{1}{3}x+\frac{2}{3}.$
- 8. Sia f una funzione derivabile con derivata continua e tale che f(1)=0, $\lim_{x\to +\infty}f(x)=1$. Allora $\int_0^{+\infty}f(e^{2x})e^{-4x}\,dx= \begin{bmatrix} a & \int_0^{+\infty}f'(e^{2x})\,dx & ; & b & \frac{2}{3}\int_0^{+\infty}f'(e^{2x})e^{-x}\,dx & ; \\ \hline c & 2\int_0^{+\infty}f'(e^{2x})e^x\,dx & ; & \hline d & \frac{1}{2}\int_0^{+\infty}f'(e^{2x})e^{-2x}\,dx & . \end{cases}$

ANALISI MATEMATICA 1 16 luglio 2010 Cognome: Nome: Matricola:

• Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.

Per annullare una risposta ritenuta errata racchiuderla in un cerchio.

• Risposta corretta: +1.5. Risposta errata: −0.25.

1. Sia f una funzione continua tale che $\int_1^4 f(x) dx = 5$. Allora esiste un numero $x_0 \in [1,4]$ tale che: a $f(x_0) > 3$; b $f(x_0) > 2$; c $f(x_0) < 1$; $f(x_0) < 2$.

2. Sia f una funzione derivabile con derivata continua e tale che f(1) = 0, $\lim_{x \to +\infty} f(x) = 1$. Allora $\int_0^{+\infty} f(e^{2x})e^{-2x} dx = \int_0^{+\infty} \int_0^{+\infty} f'(e^{2x}) dx$; $b = \frac{2}{3} \int_0^{+\infty} f'(e^{2x})e^{-x} dx$ $c = 2 \int_0^{+\infty} f'(e^{2x})e^x dx$; $c = \frac{2}{3} \int_0^{+\infty} f'(e^{2x})e^{-2x} dx$.

3. Sia g una funzione continua tale che $g(1)=-\frac{1}{2},\ g(2)=-1$. Allora esiste una soluzione dell'equazione: a $g(x)=x^3-1;$ b $g(x)=3-3x+3x^2-x^3;$ $g(x)=\frac{1}{2}x^3-3;$ $d \mid g(x) = 1 - 6x + 6x^2 - 2x^3$

4. L'insieme dove la funzione

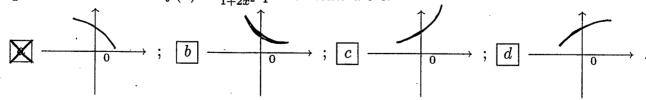
$$G(x) = \int_0^{2x^2} \frac{1-t}{t^3+2} dt$$

è strettamente crescente è: $a - \frac{1}{\sqrt{2}} < x < 0, \ x > \frac{1}{\sqrt{2}};$ $b - 1 < x < 0, \ x > 1;$ $c \ x < -1, \ 0 < x < 1;$ $x < -\frac{1}{\sqrt{2}}, \ 0 < x < \frac{1}{\sqrt{2}}.$

5. L'insieme dei valori del parametro $\alpha > 0$ per cui l'integrale $\int_0^1 \frac{\log(1+3\sqrt{x})}{\sqrt{x^\alpha}(3-x^\alpha)} \, dx$ è un integrale improprio e come integrale improprio è convergente è: $a \mid \frac{1}{2} < \alpha < \frac{3}{2}$; $b \mid 1 < \alpha < 2$; $1 < \alpha < 3; \quad d \quad 2 < \alpha < 4$.

6. La retta perpendicolare al grafico di $y=-4x^2+5x$ nel punto di ascissa x=1 è: $a y=-\frac{1}{4}x+\frac{5}{4};$ $b y=\frac{1}{2}x+\frac{1}{2};$ $c y=-\frac{1}{3}x+\frac{4}{3};$ $y=\frac{1}{3}x+\frac{2}{3}.$

7. Il grafico della funzione $f(x) = \frac{1-2x}{1+2x^2}$ per x vicino a 0 è:



8. La soluzione dell'equazione $\frac{z}{1+i} + \overline{z} = i+1$ è: $\boxed{\sum} 2-4i; \boxed{b} 3-5i; \boxed{c} -1-i;$ $d \mid -4 + 2i$.

ANALISI MATEMATICA 1		16 luglio 2010
Cognome:	Nome:	Matricola:

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. L'insieme dei valori del parametro $\alpha>0$ per cui l'integrale $\int_0^1 \frac{\sin(2\sqrt{x})}{x^\alpha(2-x^\alpha)} \, dx \text{ è un integrale improprio è convergente è:} \quad \boxed{a} \quad 2<\alpha<4 \text{ ;} \quad \boxed{\sum} \quad \frac{1}{2}<\alpha<\frac{3}{2};$ $\boxed{c} \quad 1<\alpha<2; \quad \boxed{d} \quad 1<\alpha<3.$
- 2. La retta perpendicolare al grafico di $y=3x^2-2x$ nel punto di ascissa x=1 è: a $y=\frac{1}{3}x+\frac{2}{3}$; $y=-\frac{1}{4}x+\frac{5}{4}$; $y=-\frac{1}{2}x+\frac{1}{2}$; $y=-\frac{1}{3}x+\frac{4}{3}$.
- 3. Sia f una funzione derivabile con derivata continua e tale che f(1)=0, $\lim_{x\to +\infty}f(x)=1$. Allora $\int_0^{+\infty}f(e^{2x})e^{-3x}\,dx=$ a $\frac{1}{2}\int_0^{+\infty}f'(e^{2x})e^{-2x}\,dx$; b $\int_0^{+\infty}f'(e^{2x})\,dx$; c $\frac{2}{3}\int_0^{+\infty}f'(e^{2x})e^{-x}\,dx$; d $2\int_0^{+\infty}f'(e^{2x})e^x\,dx$.
- 4. Sia g una funzione continua tale che $g(1)=-3,\ g(2)=-2$. Allora esiste una soluzione dell'equazione: $g(x)=1-6x+6x^2-2x^3$; $g(x)=x^3-1$; $g(x)=x^3-1$
- 5. La soluzione dell'equazione $\frac{z}{1-i} \overline{z} = 1 2i$ è: $\boxed{a} 4 + 2i; \boxed{b} 2 4i; \boxed{c} 3 5i;$ $\boxed{A} 1 i.$
- 6. Sia f una funzione continua tale che $\int_2^4 f(x) dx = 3$. Allora esiste un numero $x_0 \in [2, 4]$ tale che: $f(x_0) < 2$; $f(x_0) > 3$; $f(x_0) > 3$; $f(x_0) > 2$; $f(x_0) < 1$.
- 7. L'insieme dove la funzione

$$G(x) = \int_0^{x^2} \frac{1-t}{1+t^3} dt$$

è strettamente crescente è: $a \ x < -\frac{1}{\sqrt{2}}, \ 0 < x < \frac{1}{\sqrt{2}}; \quad b \ -\frac{1}{\sqrt{2}} < x < 0, \ x > \frac{1}{\sqrt{2}};$ $c \ -1 < x < 0, \ x > 1; \ x < -1, \ 0 < x < 1.$

8. Il grafico della funzione $f(x) = \frac{1-x}{1-2x^2}$ per x vicino a 0 è:

