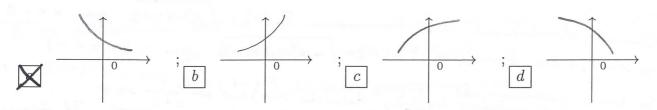
ANALISI MATEMATICA 1 - Terzo appello		20 giugno 2019
Cognome:	Nome:	Matricola:
Corso di laurea:		

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Quale delle seguenti figure rappresenta il grafico qualitativo per x vicino a 0 della soluzione del problema di Cauchy $\begin{cases} y' = 2x y^3 \\ y(0) = 1 \end{cases}$?



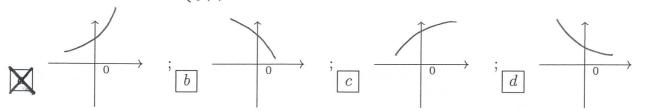
- 2. Sia $\frac{a_0}{2} + \sum_{k=1}^{\infty} [a_k \cos(kx) + b_k \sin(kx)]$ la serie di Fourier della funzione f(x) = 3x nell'intervallo $(-\pi, \pi)$. Allora $b_4 = \begin{bmatrix} a \end{bmatrix} \frac{8}{3}$; $\begin{bmatrix} b \end{bmatrix} 5$; $\begin{bmatrix} X \end{bmatrix} \frac{3}{2}$; $\begin{bmatrix} d \end{bmatrix} \frac{4}{5}$.
- 3. Siano $g: \mathbb{R} \to \mathbb{R}$ una funzione derivabile due volte, con derivata seconda continua. Se $g'(x_0) > 0$ e $g''(x_0) = 0$, allora: $a x_0$ è punto di massimo relativo per g; $b x_0$ è punto di minimo relativo per g; x_0 non è né punto di massimo relativo né punto di minimo relativo per g; $a x_0$ è punto di flesso orizzontale per $a x_0$.
- 4. Sia $q: \mathbf{R} \to \mathbf{R}$ una funzione continua tale che $q(x) = x^5$ per $|x| \le 1$, $q(x) \ge 1$ per $|x| \ge 2$. Allora, per qualunque funzione q con le proprietà indicate, si ha che: q ha minimo su q e $\min_{x \in \mathbf{R}} q(x) \le -1$; q ha minimo su q e $\min_{x \in \mathbf{R}} q(x) \ge 1$; q ha minimo su q e $\min_{x \in \mathbf{R}} q(x) \ge 1$; q ha minimo su q e $\min_{x \in \mathbf{R}} q(x) \ge 1$; q ha massimo su q e $\max_{x \in \mathbf{R}} q(x) \le -1$.
- 5. Il massimo assoluto e il minimo assoluto della funzione $f(x) = \log(x^3 9x^2 + 15x + 80)$ in [-2,2] sono: $a \max f = \log 98$, $\min f = \log 44$; $b \max f = \log 72$, $\min f = \log 54$; $c \max f = \log 97$, $\min f = \log 65$; $\max f = \log 87$, $\min f = \log 6$.
- 6. L'equazione della retta tangente al grafico della funzione $f(x) = e^{2 \log x} \cos(\sqrt{x})$ nel punto $(\pi^2, f(\pi^2))$ è: $a y = \frac{\pi^2}{2}x \frac{\pi^4}{16}$; $b y = -\frac{\pi^3}{16}x + \frac{\pi^5}{64}$; $y = -2\pi^2x + \pi^4$; $d y = -\frac{\pi^3}{2}x + \frac{\pi^5}{2}$.
- 7. Il raggio di convergenza della serie di potenze $\sum_{n=0}^{\infty} (n+3+e^{-3n^2})x^n$ è: X 1; x 1; x 1; x 2; x 3; x 3; x 4.
- 8. $\lim_{x \to 0} \frac{x \log(1+x)}{e^{x^2} \cos(x^2)} = \boxed{a} -2; \boxed{b} -\frac{1}{2}; \boxed{d} 2.$

ANALISI MATEMATICA 1 - Terzo appello		20 giugno 2019
Cognome:	Nome:	Matricola:
Corso di laurea:		

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.

1.
$$\lim_{x \to 0} \frac{x^2 + \sin(x^2)}{x - \frac{1}{2}\log(1 + 2x)} = \boxed{a} \frac{1}{2}; \quad 2; \quad \boxed{c} -2; \quad \boxed{d} -\frac{1}{2}.$$

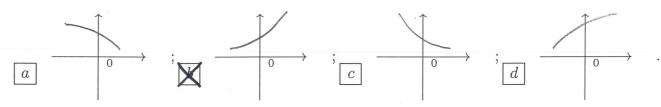
2. Quale delle seguenti figure rappresenta il grafico qualitativo per x vicino a 0 della soluzione del problema di Cauchy $\begin{cases} y' = y^3 + x \\ y(0) = 1 \end{cases}$?



- 3. L'equazione della retta tangente al grafico della funzione $f(x) = e^{2 \log x} \sin(\sqrt{x})$ nel punto $(\frac{\pi^2}{4}, f(\frac{\pi^2}{4}))$ è: $a y = -2\pi^2 x + \pi^4; b y = -\frac{\pi^3}{2}x + \frac{\pi^5}{2}; y = \frac{\pi^2}{2}x \frac{\pi^4}{16}; d y = -\frac{\pi^3}{16}x + \frac{\pi^5}{64}.$
- 4. Sia $\frac{a_0}{2} + \sum_{k=1}^{\infty} [a_k \cos(kx) + b_k \sin(kx)]$ la serie di Fourier della funzione f(x) = 5x nell'intervallo $(-\pi, \pi)$. Allora $b_2 = \begin{bmatrix} a \\ -\frac{3}{2} \end{bmatrix}$; $\begin{bmatrix} b \\ \frac{4}{5} \end{bmatrix}$; $\begin{bmatrix} c \\ \frac{8}{3} \end{bmatrix}$; $\begin{bmatrix} \times \\ -5 \end{bmatrix}$.
- 5. Il raggio di convergenza della serie di potenze $\sum_{n=0}^{\infty} (n+3+e^{-2n^2})x^n$ è: $a \frac{1}{9}$; $b \frac{1}{4}$; x = 1; $a \frac{1}{6}$.
- 6. Il massimo assoluto e il minimo assoluto della funzione $f(x) = \log(x^3 6x^2 15x + 90)$ in [-2, 2] sono: $a \max f = \log 97$, $\min f = \log 65$; $b \max f = \log 87$, $\min f = \log 6$; $\max f = \log 98$, $\min f = \log 44$; $d \max f = \log 72$, $\min f = \log 54$.
- 7. Siano $g: \mathbf{R} \to \mathbf{R}$ una funzione derivabile due volte, con derivata seconda continua. Se $g'(x_0) = 0$ e $g''(x_0) > 0$, allora: $a x_0$ non è né punto di massimo relativo né punto di minimo relativo per g; $b x_0$ è punto di flesso orizzontale per g; $c x_0$ è punto di massimo relativo per g; $c x_0$ è punto di minimo relativo per g.
- 8. Sia $q: \mathbf{R} \to \mathbf{R}$ una funzione continua tale che $q(x) = x^3$ per $|x| \le 1$, $q(x) \ge 1$ per $|x| \ge 2$. Allora, per qualunque funzione q con le proprietà indicate, si ha che: \boxed{a} q ha minimo su \mathbf{R} e $\min_{x \in \mathbf{R}} q(x) \ge 1$; \boxed{b} q ha massimo su \mathbf{R} e $\max_{x \in \mathbf{R}} q(x) \le -1$; \boxed{d} q ha massimo su \mathbf{R} e $\max_{x \in \mathbf{R}} q(x) \ge 1$.

ANALISI MATEMATICA 1 - Terzo appello		20 giugno 2019
Cognome:	Nome:	Matricola:
Corso di laurea:		

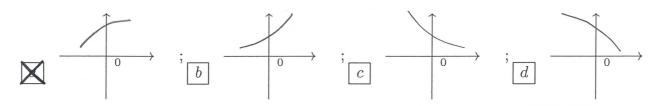
- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Il raggio di convergenza della serie di potenze $\sum_{n=0}^{\infty} (n+2+e^{-3n^2})x^n$ è: $a \frac{1}{6}; b \frac{1}{9};$ $c \frac{1}{4}; 1.$
- 2. Il massimo assoluto e il minimo assoluto della funzione $f(x) = \log(x^3 + 3x^2 9x + 70)$ in [-5, -1] sono: a $\max f = \log 72$, $\min f = \log 54$; $\max f = \log 97$, $\min f = \log 65$; c $\max f = \log 87$, $\min f = \log 6$; d $\max f = \log 98$, $\min f = \log 44$.
- 3. Quale delle seguenti figure rappresenta il grafico qualitativo per x vicino a 0 della soluzione del problema di Cauchy $\begin{cases} y' = y^3 + x \\ y(0) = 1 \end{cases}$?



- 4. L'equazione della retta tangente al grafico della funzione $f(x)=e^{2\log x}\sin(\sqrt{x})$ nel punto $(\pi^2,f(\pi^2))$ è: $a y=-\frac{\pi^3}{16}x+\frac{\pi^5}{64};$ $b y=-2\pi^2x+\pi^4;$ $y=-\frac{\pi^3}{2}x+\frac{\pi^5}{2};$ $d y=\frac{\pi^2}{2}x-\frac{\pi^4}{16}.$
- 5. Sia $q: \mathbf{R} \to \mathbf{R}$ una funzione continua tale che $q(x) = x^5$ per $|x| \le 1$, $q(x) \le -1$ per $|x| \ge 2$. Allora, per qualunque funzione q con le proprietà indicate, si ha che: q ha massimo su q e $\max_{x \in \mathbf{R}} q(x) \ge 1$; q ha minimo su q e $\max_{x \in \mathbf{R}} q(x) \ge 1$; q ha massimo su q e $\max_{x \in \mathbf{R}} q(x) \le -1$; q ha minimo su q e $\max_{x \in \mathbf{R}} q(x) \le -1$.
- 6. $\lim_{x \to 0} \frac{x \log(1+x)}{e^{x^2} \cos(x^2)} = \boxed{a} \frac{1}{2}; \boxed{k} \frac{1}{2}; \boxed{c} 2; \boxed{d} 2.$
- 7. Sia $\frac{a_0}{2} + \sum_{k=1}^{\infty} [a_k \cos(kx) + b_k \sin(kx)]$ la serie di Fourier della funzione f(x) = 5x nell'intervallo $(-\pi, \pi)$. Allora $b_2 = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$ -5; $\begin{bmatrix} 1 \\ 5 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 5 \end{bmatrix}$; $\begin{bmatrix} 1 \\ 5 \end{bmatrix}$; $\begin{bmatrix} 1 \\ 5 \end{bmatrix}$.
- 8. Siano $g: \mathbb{R} \to \mathbb{R}$ una funzione derivabile due volte, con derivata seconda continua. Se $g'(x_0) < 0$ e $g''(x_0) = 0$, allora: a x_0 è punto di minimo relativo per g; x_0 non è né punto di massimo relativo né punto di minimo relativo per g; x_0 è punto di flesso orizzontale per g; x_0 è punto di massimo relativo per g.

ANALISI MATEMATICA 1 - Terzo appello		20 giugno 2019
Cognome:	Nome:	Matricola:
Corso di laurea:		

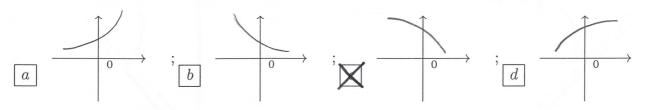
- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Sia $q: \mathbf{R} \to \mathbf{R}$ una funzione continua tale che $q(x) = x^3$ per $|x| \le 1$, $q(x) \ge 1$ per $|x| \ge 2$. Allora, per qualunque funzione q con le proprietà indicate, si ha che: q ha minimo su q e $\min_{x \in \mathbf{R}} q(x) \le -1$; q ha minimo su q e $\max_{x \in \mathbf{R}} q(x) \ge 1$; q ha minimo su q e $\min_{x \in \mathbf{R}} q(x) \ge 1$; q ha minimo su q e $\max_{x \in \mathbf{R}} q(x) \ge 1$; q ha minimo su q e $\max_{x \in \mathbf{R}} q(x) \ge 1$; q ha minimo su q e $\max_{x \in \mathbf{R}} q(x) \ge 1$; q ha minimo su q e $\max_{x \in \mathbf{R}} q(x) \ge 1$; q ha minimo su q e $\max_{x \in \mathbf{R}} q(x) \ge 1$.
- 2. $\lim_{x \to 0} \frac{\cos(x^2) e^{-x^2}}{x + \log(1 x)} = X 2; \quad \boxed{b} \frac{1}{2}; \quad \boxed{c} \quad \frac{1}{2}; \quad \boxed{d} \quad 2.$
- 3. Il massimo assoluto e il minimo assoluto della funzione $f(x) = \log(x^3 6x^2 15x + 90)$ in [-2,2] sono: $\max f = \log 98$, $\min f = \log 44$; $b \max f = \log 72$, $\min f = \log 54$; $c \max f = \log 97$, $\min f = \log 65$; $d \max f = \log 87$, $\min f = \log 6$.
- 4. Quale delle seguenti figure rappresenta il grafico qualitativo per x vicino a 0 della soluzione del problema di Cauchy $\begin{cases} y' = y^3 4x \\ y(0) = 1 \end{cases}$?



- 5. Siano $g: \mathbf{R} \to \mathbf{R}$ una funzione derivabile due volte, con derivata seconda continua. Se $g'(x_0) = 0$ e $g''(x_0) > 0$, allora: $a x_0$ è punto di massimo relativo per g; x_0 è punto di minimo relativo per g; x_0 è punto di massimo relativo né punto di minimo relativo per g; x_0 è punto di flesso orizzontale per x_0 .
- 6. Il raggio di convergenza della serie di potenze $\sum_{n=0}^{\infty} (n+2+e^{-2n^2})x^n$ è: \boxed{M} 1; \boxed{b} $\frac{1}{6}$; \boxed{c} $\frac{1}{9}$; \boxed{d} $\frac{1}{4}$.
- 7. L'equazione della retta tangente al grafico della funzione $f(x) = e^{2 \log x} \cos(\sqrt{x})$ nel punto $(\pi^2, f(\pi^2))$ è: $a y = \frac{\pi^2}{2}x \frac{\pi^4}{16}$; $b y = -\frac{\pi^3}{16}x + \frac{\pi^5}{64}$; $y = -2\pi^2x + \pi^4$; $d y = -\frac{\pi^3}{2}x + \frac{\pi^5}{2}$.
- 8. Sia $\frac{a_0}{2} + \sum_{k=1}^{\infty} [a_k \cos(kx) + b_k \sin(kx)]$ la serie di Fourier della funzione f(x) = 2x nell'intervallo $(-\pi, \pi)$. Allora $b_5 = \begin{bmatrix} a \end{bmatrix} \frac{8}{3}$; $\begin{bmatrix} b \end{bmatrix} -5$; $\begin{bmatrix} c \end{bmatrix} -\frac{3}{2}$; $\begin{bmatrix} X \end{bmatrix} \frac{4}{5}$.

ANALISI MATEMATICA 1 - Terzo appello		20 giugno 2019
Cognome:	Nome:	Matricola:
Corso di laurea:		

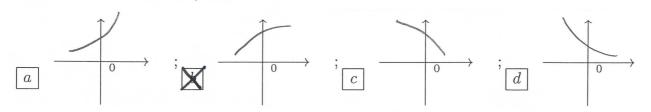
- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. L'equazione della retta tangente al grafico della funzione $f(x)=e^{2\log x}\sin(\sqrt{x})$ nel punto $(\pi^2,f(\pi^2))$ è: $a y=-\frac{\pi^3}{16}x+\frac{\pi^5}{64};$ $b y=-2\pi^2x+\pi^4;$ $y=-\frac{\pi^3}{2}x+\frac{\pi^5}{2};$ $d y=\frac{\pi^2}{2}x-\frac{\pi^4}{16}.$
- 2. Siano $g: \mathbb{R} \to \mathbb{R}$ una funzione derivabile due volte, con derivata seconda continua. Se $g'(x_0) < 0$ e $g''(x_0) = 0$, allora: a x_0 è punto di minimo relativo per g; x_0 non è né punto di massimo relativo né punto di minimo relativo per g; x_0 è punto di flesso orizzontale per g; x_0 è punto di massimo relativo per x_0 .
- 3. Sia $q: \mathbf{R} \to \mathbf{R}$ una funzione continua tale che $q(x) = x^5$ per $|x| \le 1$, $q(x) \le -1$ per $|x| \ge 2$. Allora, per qualunque funzione q con le proprietà indicate, si ha che: q ha massimo su q e $\max_{x \in \mathbf{R}} q(x) \ge 1$; q ha minimo su q e $\max_{x \in \mathbf{R}} q(x) \le 1$; q ha massimo su q e $\max_{x \in \mathbf{R}} q(x) \le -1$; q ha minimo su q e $\max_{x \in \mathbf{R}} q(x) \le -1$.
- 4. Il raggio di convergenza della serie di potenze $\sum_{n=0}^{\infty} (n+2+e^{-2n^2})x^n$ è: $a \frac{1}{6}; b \frac{1}{9};$ $c \frac{1}{4}; 1.$
- 5. Quale delle seguenti figure rappresenta il grafico qualitativo per x vicino a 0 della soluzione del problema di Cauchy $\begin{cases} y' = -5x y^3 \\ y(0) = 1 \end{cases}$?



- 6. Sia $\frac{a_0}{2} + \sum_{k=1}^{\infty} [a_k \cos(kx) + b_k \sin(kx)]$ la serie di Fourier della funzione f(x) = 2x nell'intervallo $(-\pi, \pi)$. Allora $b_5 = \boxed{a} 5$; $\boxed{b} \frac{3}{2}$; $\boxed{d} \frac{8}{3}$.
- 7. $\lim_{x \to 0} \frac{\cos(x^2) e^{-x^2}}{x + \log(1 x)} = \boxed{a} \frac{1}{2}; \boxed{b} \frac{1}{2}; \boxed{c} 2; \boxed{-2}.$
- 8. Il massimo assoluto e il minimo assoluto della funzione $f(x) = \log(x^3 + 3x^2 9x + 70)$ in [-5, -1] sono: $a \max f = \log 72$, $\min f = \log 54$; $\max f = \log 97$, $\min f = \log 65$; $c \max f = \log 87$, $\min f = \log 6$; $d \max f = \log 98$, $\min f = \log 44$.

ANALISI MATEMATICA 1 - Terzo appello		20 giugno 2019
Cognome:	Nome:	Matricola:
Corso di laurea:		

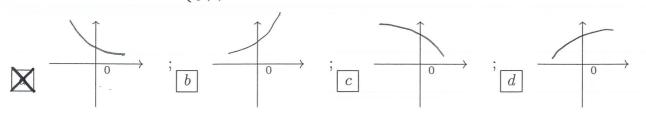
- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Il massimo assoluto e il minimo assoluto della funzione $f(x) = \log(x^3 + 7x^2 + 8x + 56)$ in [-5, -1] sono: $a \max f = \log 87$, $\min f = \log 6$; $b \max f = \log 98$, $\min f = \log 44$; $a \max f = \log 72$, $\min f = \log 54$; $a \max f = \log 97$, $\min f = \log 65$.
- 2. L'equazione della retta tangente al grafico della funzione $f(x) = e^{2 \log x} \cos(\sqrt{x})$ nel punto $(\frac{\pi^2}{4}, f(\frac{\pi^2}{4}))$ è: $a y = -\frac{\pi^3}{2}x + \frac{\pi^5}{2}$; $b y = \frac{\pi^2}{2}x \frac{\pi^4}{16}$; $y = -\frac{\pi^3}{16}x + \frac{\pi^5}{64}$; $d y = -2\pi^2 x + \pi^4$.
- 3. Sia $\frac{a_0}{2} + \sum_{k=1}^{\infty} [a_k \cos(kx) + b_k \sin(kx)]$ la serie di Fourier della funzione f(x) = 4x nell'intervallo $(-\pi, \pi)$. Allora $b_3 = \begin{bmatrix} a \end{bmatrix} \frac{4}{5}$; $\begin{bmatrix} X \end{bmatrix} \frac{8}{3}$; $\begin{bmatrix} c \end{bmatrix} -5$; $\begin{bmatrix} d \end{bmatrix} -\frac{3}{2}$.
- 4. Siano $g: \mathbf{R} \to \mathbf{R}$ una funzione derivabile due volte, con derivata seconda continua. Se $g'(x_0) = 0$ e $g''(x_0) < 0$, allora: $a x_0$ è punto di flesso orizzontale per g; x_0 è punto di massimo relativo per g; x_0 è punto di minimo relativo per x_0 ; x_0 è punto di massimo relativo né punto di minimo relativo per x_0 .
- 5. $\lim_{x \to 0} \frac{x + \frac{1}{2}\log(1 2x)}{x^2 + \tan(x^2)} = \boxed{a} \ 2; \ \boxed{b} \ -2; \ \boxed{d} \ \frac{1}{2}.$
- 6. Quale delle seguenti figure rappresenta il grafico qualitativo per x vicino a 0 della soluzione del problema di Cauchy $\begin{cases} y' = y^3 4x \\ y(0) = 1 \end{cases}$?



- 7. Sia $q: \mathbf{R} \to \mathbf{R}$ una funzione continua tale che $q(x) = x^3$ per $|x| \le 1$, $q(x) \le -1$ per $|x| \ge 2$. Allora, per qualunque funzione q con le proprietà indicate, si ha che: a q ha massimo su \mathbf{R} e $\max_{x \in \mathbf{R}} q(x) \le -1$; b q ha minimo su \mathbf{R} e $\min_{x \in \mathbf{R}} q(x) \le -1$; q ha massimo su q e $\max_{x \in \mathbf{R}} q(x) \ge 1$; q ha minimo su q e $\min_{x \in \mathbf{R}} q(x) \ge 1$.
- 8. Il raggio di convergenza della serie di potenze $\sum_{n=0}^{\infty} (n+2+e^{-3n^2})x^n$ è: a $\frac{1}{4}$; x 1; x 2; x 3; x 3; x 4; x 3; x 4; x 5; x 6; x 6; x 8; x 1; x 8; x 1; x 1; x 1; x 1; x 1; x 2; x 3; x 3; x 4; x 3; x 4; x 4; x 5; x 6; x 6; x 8; x 8; x 8; x 8; x 9; x 8; x 9; x

ANALISI MATEMATICA 1 - Terzo appello		20 giugno 2019
Cognome:	Nome:	Matricola:
Corso di laurea:		

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Siano $g: \mathbf{R} \to \mathbf{R}$ una funzione derivabile due volte, con derivata seconda continua. Se $g'(x_0) > 0$ e $g''(x_0) = 0$, allora: $a x_0$ è punto di flesso orizzontale per g; $b x_0$ è punto di massimo relativo per g; $c x_0$ è punto di minimo relativo per g; $c x_0$ non è né punto di massimo relativo né punto di minimo relativo per g.
- 2. Il raggio di convergenza della serie di potenze $\sum_{n=0}^{\infty} (n+3+e^{-3n^2})x^n$ è: $a \frac{1}{4}$; x 1; $c \frac{1}{6}$; $d \frac{1}{9}$.
- 3. $\lim_{x \to 0} \frac{x^2 + \sin(x^2)}{x \frac{1}{2}\log(1 + 2x)} = \mathbb{Z}$ 2; b 2; $c \frac{1}{2}$; $d \frac{1}{2}$.
- 5. Sia $\frac{a_0}{2} + \sum_{k=1}^{\infty} [a_k \cos(kx) + b_k \sin(kx)]$ la serie di Fourier della funzione f(x) = 4x nell'intervallo $(-\pi, \pi)$. Allora $b_3 = a \frac{4}{5}$; $x = \frac{8}{3}$; $x = \frac{3}{2}$.
- 6. Sia $q: \mathbf{R} \to \mathbf{R}$ una funzione continua tale che $q(x) = x^5$ per $|x| \le 1$, $q(x) \ge 1$ per $|x| \ge 2$. Allora, per qualunque funzione q con le proprietà indicate, si ha che: a q ha massimo su \mathbf{R} e $\max_{x \in \mathbf{R}} q(x) \le -1$; a q ha minimo su a e $\max_{x \in \mathbf{R}} q(x) \le 1$; a q ha minimo su a e $\max_{x \in \mathbf{R}} q(x) \ge 1$; a q ha minimo su a e $\min_{x \in \mathbf{R}} q(x) \ge 1$.
- 7. Quale delle seguenti figure rappresenta il grafico qualitativo per x vicino a 0 della soluzione del problema di Cauchy $\begin{cases} y' = 2x y^3 \\ y(0) = 1 \end{cases}$?



8. L'equazione della retta tangente al grafico della funzione $f(x) = e^{2\log x}\cos(\sqrt{x})$ nel punto $(\frac{\pi^2}{4}, f(\frac{\pi^2}{4}))$ è: $a y = -\frac{\pi^3}{2}x + \frac{\pi^5}{2};$ $b y = \frac{\pi^2}{2}x - \frac{\pi^4}{16};$ $y = -\frac{\pi^3}{16}x + \frac{\pi^5}{64};$ $d y = -2\pi^2x + \pi^4.$

ANALISI MATEMATICA 1 - Terzo appello		20 giugno 2019
Cognome:	Nome:	Matricola:
Corso di laurea:		Test Es1 Es2 Es3

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Sia $\frac{a_0}{2} + \sum_{k=1}^{\infty} [a_k \cos(kx) + b_k \sin(kx)]$ la serie di Fourier della funzione f(x) = 3x nell'intervallo $(-\pi, \pi)$. Allora $b_4 = \left[\begin{array}{ccc} -\frac{3}{2}; & b \end{array} \right] \frac{4}{5}; \quad c \quad \frac{8}{3}; \quad d \quad -5.$
- 2. Sia $q: \mathbf{R} \to \mathbf{R}$ una funzione continua tale che $q(x) = x^3$ per $|x| \le 1$, $q(x) \le -1$ per $|x| \ge 2$. Allora, per qualunque funzione q con le proprietà indicate, si ha che: \boxed{a} q ha minimo su \mathbf{R} e $\min_{x \in \mathbf{R}} q(x) \ge 1$; \boxed{b} q ha massimo su \mathbf{R} e $\max_{x \in \mathbf{R}} q(x) \le -1$; \boxed{c} q ha minimo su \mathbf{R} e $\min_{x \in \mathbf{R}} q(x) \le -1$; \boxed{d} q ha massimo su \mathbf{R} e $\max_{x \in \mathbf{R}} q(x) \ge 1$.
- 3. Il raggio di convergenza della serie di potenze $\sum_{n=0}^{\infty} (n+3+e^{-2n^2})x^n$ è: a $\frac{1}{9}$; b $\frac{1}{4}$; \times 1; a $\frac{1}{6}$.
- 4. $\lim_{x \to 0} \frac{x + \frac{1}{2}\log(1 2x)}{x^2 + \tan(x^2)} = \boxed{a} \frac{1}{2}; \boxed{b} 2; \boxed{c} -2; \boxed{A} \frac{1}{2}.$
- 5. L'equazione della retta tangente al grafico della funzione $f(x) = e^{2\log x} \sin(\sqrt{x})$ nel punto $(\frac{\pi^2}{4}, f(\frac{\pi^2}{4}))$ è: $a y = -2\pi^2 x + \pi^4; b y = -\frac{\pi^3}{2}x + \frac{\pi^5}{2}; x y = \frac{\pi^2}{2}x \frac{\pi^4}{16}; d y = -\frac{\pi^3}{16}x + \frac{\pi^5}{64}.$
- 6. Siano $g: \mathbf{R} \to \mathbf{R}$ una funzione derivabile due volte, con derivata seconda continua. Se $g'(x_0) = 0$ e $g''(x_0) < 0$, allora: $a x_0$ non è né punto di massimo relativo né punto di minimo relativo per g; $b x_0$ è punto di flesso orizzontale per g; x_0 è punto di massimo relativo per g; x_0 è punto di minimo relativo per g.
- 7. Il massimo assoluto e il minimo assoluto della funzione $f(x) = \log(x^3 + 7x^2 + 8x + 56)$ in [-5, -1] sono: $a \max f = \log 97$, $\min f = \log 65$; $b \max f = \log 87$, $\min f = \log 6$; $c \max f = \log 98$, $\min f = \log 44$; $max f = \log 72$, $min f = \log 54$.
- 8. Quale delle seguenti figure rappresenta il grafico qualitativo per x vicino a 0 della soluzione del problema di Cauchy $\begin{cases} y' = -5x y^3 \\ y(0) = 1 \end{cases}$?

