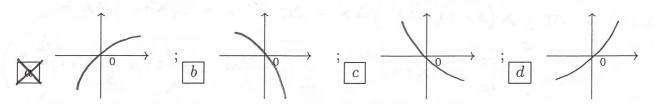
ANALISI MATEMATICA 1 - Terzo appello		22 giugno 2017
Cognome:	Nome:	Matricola:
Corso di laurea:		

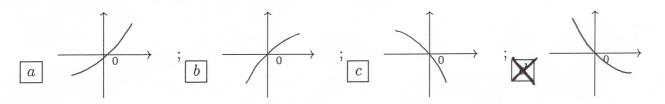
- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Il grafico vicino all'origine del polinomio di Taylor di secondo grado e di centro $x_0 = 0$ della funzione $f(x) = (x^2 3x)\sin(x 1)$ è:



- 2. Il valore massimo e il valore minimo della funzione $f(x) = \frac{x+1}{x^2+3}$ in [-3,2] sono: a min = $-\frac{1}{2}$, max = $\frac{1}{10}$; b min = $-\frac{1}{2}$, max = $\frac{1}{6}$; $min = -\frac{1}{6}$, max = $\frac{1}{2}$; d min = $-\frac{1}{10}$, max = $\frac{1}{2}$.
- 3. $\lim_{x\to 0} \frac{(1+x^2)^2 1}{\log[1+3\sin(x^2)]} = a \frac{3}{2}; b -\frac{3}{2}; \frac{2}{3}; d -\frac{2}{3}.$
- 4. Sia f derivabile in x_0 . Allora: a $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0-h)}{h} = f'(x_0); \quad b$ $\lim_{h\to 0} \frac{f(x_0+h)+f(x_0-h)}{h} = 2f'(x_0); \quad c$ $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x+x_0} = f'(x_0); \quad k \to 0$ $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h} = 2f'(x_0).$
- 5. I valori dei parametri $\alpha \in \mathbf{R}$ e $\beta \in \mathbf{R}$ per cui la funzione $f(x) = \begin{cases} x^3 \alpha x + \beta & \text{per } x \geq 0 \\ -\alpha x^3 + 2\beta x 1 & \text{per } x < 0 \end{cases}$ è derivabile in \mathbf{R} sono: $\boxed{a} \quad \alpha = -\frac{1}{2}, \ \beta = -1; \ \boxed{b} \quad \alpha = 1, \ \beta = -1; \ \boxed{c} \quad \alpha = 2, \ \beta = -1;$ $\boxed{d} \quad \alpha = -3, \ \beta = -1.$
- 6. Sia $f(t) = \frac{3t^2+1}{4-3t}$, per $t \in (0, \frac{4}{3})$. L'equazione della retta tangente al grafico della funzione inversa f^{-1} nel punto $(4, f^{-1}(4))$ è: $a y = \frac{1}{4}x + \frac{1}{2}$; $b y = \frac{1}{8}x + \frac{5}{8}$; $y = \frac{1}{18}x + \frac{7}{9}$; $d y = \frac{1}{3}x + \frac{1}{3}$.
- 7. Le soluzioni $z \in \mathbb{C}$ dell'equazione $3|z|^2 + 2i\overline{z} + 3z^2 = 0$ sono: $a z = 0, z = \pm \frac{3}{2} \frac{3}{2}i;$ $b z = 0, z = -\frac{3}{2}i;$ $z = 0, z = \pm \frac{1}{3} \frac{1}{3}i;$ $z = 0, z = -\frac{1}{3}i.$
- 8. Sia $q:[1,+\infty)\to \mathbf{R}$ una funzione continua tale che $q(x)\geq 0$ per ogni $x\geqslant 4$. Quale delle seguenti implicazioni è sempre vera? a se $\lim_{x\to +\infty} x^{-2}q(x)=0$ allora $\int_4^{+\infty} q(x)\,dx$ è convergente ; a se a se a allora a dello seguenti implicazioni è sempre vera? a se a allora a dello se a dello se a dello se a se a dello se

ANALISI MATEMATICA 1 - Terzo appello		22 giugno 2017
Cognome:	Nome:	Matricola:
Corso di laurea:		

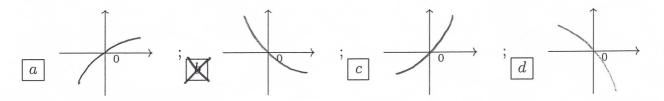
- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Sia $q:[1,+\infty)\to \mathbf{R}$ una funzione continua tale che $q(x)\geq 0$ per ogni $x\geq 1$. Quale delle seguenti implicazioni è sempre vera? a se $\lim_{x\to +\infty}q(x)=0$ allora $\int_{1}^{+\infty}q(x)\,dx$ è convergente ; a se $\lim_{x\to +\infty}x^2q(x)=0$ allora $\lim_{x\to +\infty}x^2q(x)=0$ allora $\lim_{x\to +\infty}x^2q(x)=0$ se $\lim_{x\to +\infty}x^2q(x)=0$ se $\lim_{x\to +\infty}x^2q(x)=0$ allora $\lim_{x\to +\infty}x^2q(x)=0$ se $\lim_{x\to +\infty}x^2q(x)=0$ se $\lim_{x\to +\infty}x^2q(x)=0$ allora $\lim_{x\to +\infty}x^2q(x)=0$ se $\lim_{x\to +\infty}x$
- 2. Il grafico vicino all'origine del polinomio di Taylor di secondo grado e di centro $x_0 = 0$ della funzione $f(x) = (x^2 3x)\sin(x + 2)$ è:



- 3. Sia $f(t)=\frac{t^2+1}{2-t}$, per $t\in(0,2)$. L'equazione della retta tangente al grafico della funzione inversa f^{-1} nel punto $(2,f^{-1}(2))$ è: $a y=\frac{1}{18}x+\frac{7}{9}$; $b y=\frac{1}{3}x+\frac{1}{3}$; $y=\frac{1}{4}x+\frac{1}{2}$; $y=\frac{1}{4}x+\frac{1}{2}$; $y=\frac{1}{8}x+\frac{5}{8}$.
- 4. Il valore massimo e il valore minimo della funzione $f(x) = \frac{x-2}{x^2+5}$ in [-2,5] sono: a min = $-\frac{1}{6}$, max = $\frac{1}{2}$; b min = $-\frac{1}{10}$, max = $\frac{1}{2}$; $min = -\frac{1}{2}$, max = $\frac{1}{10}$; d min = $-\frac{1}{2}$, max = $\frac{1}{6}$.
- 5. Le soluzioni $z \in \mathbb{C}$ dell'equazione $|z|^2 + 3i\overline{z} + z^2 = 0$ sono: $a z = 0, z = \pm \frac{1}{3} \frac{1}{3}i;$ $b z = 0, z = -\frac{1}{3}i;$ $z = 0, z = \pm \frac{3}{2} \frac{3}{2}i;$ $z = 0, z = -\frac{3}{2}i.$
- 6. I valori dei parametri $\alpha \in \mathbf{R}$ e $\beta \in \mathbf{R}$ per cui la funzione $f(x) = \begin{cases} x^2 + 2\alpha x \beta & \text{per } x \ge 0 \\ -\alpha x^2 + \beta x + 1 & \text{per } x < 0 \end{cases}$ è derivabile in \mathbf{R} sono: \boxed{a} $\alpha = 2$, $\beta = -1$; \boxed{b} $\alpha = -3$, $\beta = -1$; $\boxed{\alpha}$ $\alpha = -\frac{1}{2}$, $\beta = -1$; \boxed{d} $\alpha = 1$, $\beta = -1$.
- 7. $\lim_{x \to 0} \frac{\log[1 + 3\sin(x^2)]}{1 \cos(2x)} = \boxed{a} \frac{2}{3}; \boxed{b} \frac{2}{3}; \boxed{d} \frac{3}{2}.$
- 8. Sia f derivabile in x_0 . Allora: a $\lim_{x \to x_0} \frac{f(x) f(x_0)}{x + x_0} = f'(x_0); \quad \mathbf{X}$ $\lim_{h \to 0} \frac{f(x_0 + 2h) f(x_0)}{h} = 2f'(x_0); \quad c$ $\lim_{h \to 0} \frac{f(x_0 + h) f(x_0 h)}{h} = 2f'(x_0); \quad d$ $\lim_{h \to 0} \frac{f(x_0 + h) + f(x_0 h)}{h} = 2f'(x_0).$

ANALISI MATEMATICA 1 - Terzo appello		22 giugno 2017
Cognome:	Nome:	Matricola:
Corso di laurea:		

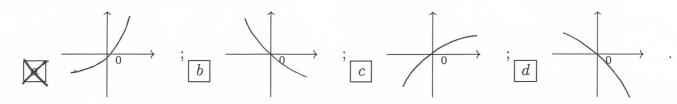
- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Le soluzioni $z \in \mathbb{C}$ dell'equazione $|z|^2 + 3i\overline{z} z^2 = 0$ sono: $z = \pm \frac{1}{3} \frac{1}{3}i;$ $z = 0, z = -\frac{3}{2}i;$ $z = 0, z = -\frac{3}{2}i;$
- 2. I valori dei parametri $\alpha \in \mathbf{R}$ e $\beta \in \mathbf{R}$ per cui la funzione $f(x) = \begin{cases} \alpha x^2 \beta x + 2\beta & \text{per } x \geq 0 \\ -x^2 + \alpha x 2 & \text{per } x < 0 \end{cases}$ è derivabile in \mathbf{R} sono: $\alpha = 1, \beta = -1; \beta = -1; \alpha = 2, \beta = -1; \alpha = -3, \beta = -1; \beta =$
- 3. Il grafico vicino all'origine del polinomio di Taylor di secondo grado e di centro $x_0 = 0$ della funzione $f(x) = (x^2 3x)\sin(x + 2)$ è:



- 4. Sia $f(t) = \frac{t^2+2}{3-2t}$, per $t \in (0,\frac{3}{2})$. L'equazione della retta tangente al grafico della funzione inversa f^{-1} nel punto $(3,f^{-1}(3))$ è: $y = \frac{1}{8}x + \frac{5}{8}$; $y = \frac{1}{18}x + \frac{7}{9}$; $y = \frac{1}{3}x + \frac{1}{3}$; $y = \frac{1}{4}x + \frac{1}{2}$.
- 5. Sia f derivabile in x_0 . Allora: a $\lim_{h\to 0} \frac{f(x_0+h)+f(x_0)}{h} = f'(x_0); b$ $\lim_{x\to x_0} \frac{f(x)+f(x_0)}{x-x_0} = f'(x_0); b$ $\lim_{h\to 0} \frac{f(x_0+\frac{h}{2})-f(x_0)}{h} = \frac{1}{2}f'(x_0); d$ $\lim_{h\to 0} \frac{f(x_0)-f(x_0+h)}{h} = f'(x_0).$
- 6. Sia $q: [1, +\infty) \to \mathbf{R}$ una funzione continua tale che $q(x) \ge 0$ per ogni $x \ge 1$. Quale delle seguenti implicazioni è sempre vera? a se $q(x) \le \frac{1}{\sqrt{x}} \frac{1}{x^2}$ per ogni $x \ge 1$ allora $\int_{1}^{+\infty} q(x) dx$ è convergente; \mathbf{X} se $\lim_{x \to +\infty} x \sqrt{q(x)} = 0$ allora $\int_{1}^{+\infty} q(x) dx$ è convergente ; \mathbf{Z} se $\lim_{x \to +\infty} x^{-1}q(x) = 0$ allora $\int_{1}^{+\infty} q(x) dx$ è convergente ; \mathbf{Z} se $\lim_{x \to +\infty} x^{-1}q(x) = 0$ allora $\int_{1}^{+\infty} q(x) dx$ è convergente .
- 7. Il valore massimo e il valore minimo della funzione $f(x) = \frac{x+1}{x^2+3}$ in [-3,2] sono: \boxed{a} min = $-\frac{1}{2}$, max = $\frac{1}{6}$; $\boxed{min} = -\frac{1}{6}$, max = $\frac{1}{2}$; \boxed{c} min = $-\frac{1}{10}$, max = $\frac{1}{2}$; \boxed{d} min = $-\frac{1}{2}$, max = $\frac{1}{10}$.
- 8. $\lim_{x \to 0} \frac{e^{3\sin(x^2)} 1}{\cos(2x) 1} = \left[\sum_{x \to 0} -\frac{3}{2}; \ b \ \frac{2}{3}; \ c \ -\frac{2}{3}; \ d \ \frac{3}{2}. \right]$

ANALISI MATEMATICA 1 - Terzo appello		22 giugno 2017
Cognome:	Nome:	Matricola:
Corso di laurea:		

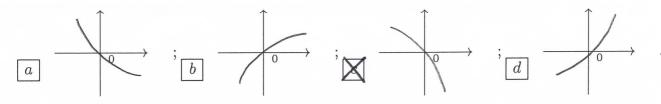
- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Sia f derivabile in x_0 . Allora: a $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0-h)}{h} = f'(x_0);$ b $\lim_{h\to 0} \frac{f(x_0+h)+f(x_0-h)}{h} = 2f'(x_0);$ c $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x+x_0} = f'(x_0);$ $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h} = 2f'(x_0).$
- 2. Sia $q: [1, +\infty) \to \mathbf{R}$ una funzione continua tale che $q(x) \geq 0$ per ogni $x \geqslant 1$. Quale delle seguenti implicazioni è sempre vera? a se $\lim_{x \to +\infty} x^{-2} q(x) = 0$ allora $\int_{1}^{+\infty} q(x) \, dx$ è convergente ; a se a se
- 3. I valori dei parametri $\alpha \in \mathbf{R}$ e $\beta \in \mathbf{R}$ per cui la funzione $f(x) = \begin{cases} x^2 + 2\alpha x \beta & \text{per } x \geq 0 \\ -\alpha x^2 + \beta x + 1 & \text{per } x < 0 \end{cases}$ è derivabile in \mathbf{R} sono: $\boxed{\boldsymbol{\alpha}} \quad \alpha = -\frac{1}{2}, \ \beta = -1; \quad \boxed{\boldsymbol{b}} \quad \alpha = 1, \ \beta = -1; \quad \boxed{\boldsymbol{c}} \quad \alpha = 2, \ \beta = -1;$ $\boxed{\boldsymbol{d}} \quad \alpha = -3, \ \beta = -1.$
- 4. Il grafico vicino all'origine del polinomio di Taylor di secondo grado e di centro $x_0 = 0$ della funzione $f(x) = (x^2 + 3x)\sin(x + 1)$ è:



- 5. $\lim_{x \to 0} \frac{(1+x^2)^2 1}{\log[1 + 3\sin(x^2)]} = \boxed{a} \frac{3}{2}; \boxed{b} \frac{3}{2}; \boxed{d} \frac{2}{3}.$
- 6. Le soluzioni $z \in \mathbb{C}$ dell'equazione $3|z|^2 + 2i\overline{z} + 3z^2 = 0$ sono: $a z = 0, z = \pm \frac{3}{2} \frac{3}{2}i;$ $b z = 0, z = -\frac{3}{2}i;$ $z = 0, z = \pm \frac{1}{3} \frac{1}{3}i;$ $z = 0, z = -\frac{1}{3}i.$
- 7. Sia $f(t) = \frac{3t^2+1}{4-3t}$, per $t \in (0, \frac{4}{3})$. L'equazione della retta tangente al grafico della funzione inversa f^{-1} nel punto $(4, f^{-1}(4))$ è: $a y = \frac{1}{4}x + \frac{1}{2}$; $b y = \frac{1}{8}x + \frac{5}{8}$; $y = \frac{1}{18}x + \frac{7}{9}$; $d y = \frac{1}{3}x + \frac{1}{3}$.
- 8. Il valore massimo e il valore minimo della funzione $f(x) = \frac{x+2}{x^2+5}$ in [-5,2] sono: a min = $-\frac{1}{2}$, max = $\frac{1}{10}$; b min = $-\frac{1}{2}$, max = $\frac{1}{6}$; c min = $-\frac{1}{6}$, max = $\frac{1}{2}$; $min = -\frac{1}{10}$, max = $\frac{1}{2}$.

ANALISI MATEMATICA 1 - Terzo appello		22 giugno 2017
Cognome:	Nome:	Matricola:
Corso di laurea:		

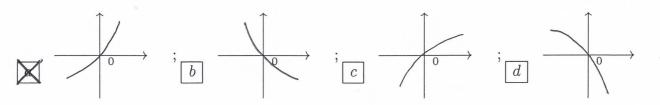
- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Sia $f(t)=\frac{2t^2+2}{3-t}$, per $t\in(0,3)$. L'equazione della retta tangente al grafico della funzione inversa f^{-1} nel punto $(2,f^{-1}(2))$ è: $a y=\frac{1}{8}x+\frac{5}{8}$; $b y=\frac{1}{18}x+\frac{7}{9}$; $y=\frac{1}{3}x+\frac{1}{3}$; $d y=\frac{1}{4}x+\frac{1}{2}$.
- 2. $\lim_{x \to 0} \frac{(1+x^2)^2 1}{1 e^{3\sin(x^2)}} = \boxed{a} \frac{3}{2}; \boxed{b} \frac{2}{3}; \boxed{A} \frac{2}{3}; \boxed{d} \frac{3}{2}.$
- 3. Sia f derivabile in x_0 . Allora: a $\lim_{h\to 0} \frac{f(x_0+h)+f(x_0)}{h} = f'(x_0); \quad b$ $\lim_{x\to x_0} \frac{f(x)+f(x_0)}{x-x_0} = f'(x_0); \quad b$ $\lim_{h\to 0} \frac{f(x_0+\frac{h}{2})-f(x_0)}{h} = \frac{1}{2}f'(x_0); \quad d$ $\lim_{h\to 0} \frac{f(x_0)-f(x_0+h)}{h} = f'(x_0).$
- 4. Le soluzioni $z \in \mathbb{C}$ dell'equazione $3|z|^2 + 2i\overline{z} 3z^2 = 0$ sono: $a z = 0, z = -\frac{3}{2}i;$ $b z = 0, z = \pm \frac{1}{3} \frac{1}{3}i;$ $z = 0, z = -\frac{1}{3}i;$ $z = 0, z = \pm \frac{3}{2} \frac{3}{2}i.$
- 5. Il grafico vicino all'origine del polinomio di Taylor di secondo grado e di centro $x_0 = 0$ della funzione $f(x) = (x^2 + 3x)\sin(x 2)$ è:



- 6. Il valore massimo e il valore minimo della funzione $f(x) = \frac{x+2}{x^2+5}$ in [-5,2] sono: a min = $-\frac{1}{2}$, max = $\frac{1}{6}$; b min = $-\frac{1}{6}$, max = $\frac{1}{2}$; m min = $-\frac{1}{10}$, max = $\frac{1}{2}$; d min = $-\frac{1}{2}$, max = $\frac{1}{10}$.
- 7. Sia $q:[1,+\infty)\to \mathbf{R}$ una funzione continua tale che $q(x)\geq 0$ per ogni $x\geqslant 1$. Quale delle seguenti implicazioni è sempre vera? a se $q(x)\leq \frac{1}{\sqrt{x}}-\frac{1}{x^2}$ per ogni $x\geqslant 1$ allora $\int_1^{+\infty}q(x)\,dx$ è convergente; \mathbf{X} se $\lim_{x\to +\infty}x\sqrt{q(x)}=0$ allora $\int_1^{+\infty}q(x)\,dx$ è convergente ; \mathbf{Z} se $\lim_{x\to +\infty}x^{-1}q(x)=0$ allora $\int_1^{+\infty}q(x)\,dx$ è convergente ; \mathbf{Z} se $\lim_{x\to +\infty}x^{-1}q(x)=0$ allora $\lim_{x\to +\infty}x^{-1}q(x)=$
- 8. I valori dei parametri $\alpha \in \mathbf{R}$ e $\beta \in \mathbf{R}$ per cui la funzione $f(x) = \begin{cases} x^3 3\beta x 2 & \text{per } x \geq 0 \\ \alpha x^3 \alpha x + 2\beta & \text{per } x < 0 \end{cases}$ è derivabile in \mathbf{R} sono: \boxed{a} $\alpha = 1$, $\beta = -1$; \boxed{b} $\alpha = 2$, $\beta = -1$; \boxed{d} $\alpha = -\frac{1}{2}$, $\beta = -1$.

ANALISI MATEMATICA 1 - Terzo appello		22 giugno 2017
Cognome:	Nome:	Matricola:
Corso di laurea:		

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. I valori dei parametri $\alpha \in \mathbf{R}$ e $\beta \in \mathbf{R}$ per cui la funzione $f(x) = \begin{cases} \alpha x^2 \beta x + 2\beta & \text{per } x \geq 0 \\ -x^2 + \alpha x 2 & \text{per } x < 0 \end{cases}$ è derivabile in \mathbf{R} sono: \boxed{a} $\alpha = -3$, $\beta = -1$; \boxed{b} $\alpha = -\frac{1}{2}$, $\beta = -1$; \boxed{c} $\alpha = 1$, $\beta = -1$; \boxed{d} $\alpha = 2$, $\beta = -1$.
- 2. Sia $f(t) = \frac{t^2+2}{3-2t}$, per $t \in (0, \frac{3}{2})$. L'equazione della retta tangente al grafico della funzione inversa f^{-1} nel punto $(3, f^{-1}(3))$ è: $a y = \frac{1}{3}x + \frac{1}{3}$; $b y = \frac{1}{4}x + \frac{1}{2}$; $y = \frac{1}{8}x + \frac{5}{8}$; $d y = \frac{1}{18}x + \frac{7}{9}$.
- 3. Il valore massimo e il valore minimo della funzione $f(x) = \frac{x-1}{x^2+3}$ in [-2,3] sono: a min = $-\frac{1}{10}$, max = $\frac{1}{2}$; b min = $-\frac{1}{2}$, max = $\frac{1}{10}$; $min = -\frac{1}{2}$, max = $\frac{1}{6}$; a min = $-\frac{1}{6}$, max = $\frac{1}{2}$.
- 4. $\lim_{x \to 0} \frac{e^{3\sin(x^2)} 1}{\cos(2x) 1} = \boxed{a} \frac{2}{3}; \boxed{b} \frac{3}{2}; \boxed{d} \frac{2}{3}.$
- 5. Sia $q:[1,+\infty)\to \mathbf{R}$ una funzione continua tale che $q(x)\geq 0$ per ogni $x\geqslant 4$. Quale delle seguenti implicazioni è sempre vera? a se $\lim_{x\to +\infty} x^{-1}q(x)=0$ allora $\int_4^{+\infty} q(x)\,dx$ è convergente ; a se $\lim_{x\to +\infty} x^{-1}q(x)=0$ allora $\lim_{x\to +\infty} x^{-1}q(x)\,dx$ è convergente ; $\lim_{x\to +\infty} x\sqrt{q(x)}=0$ allora $\lim_{x\to +\infty} x\sqrt{q(x)}$
- 6. Il grafico vicino all'origine del polinomio di Taylor di secondo grado e di centro $x_0 = 0$ della funzione $f(x) = (x^2 + 3x)\sin(x + 1)$ è:



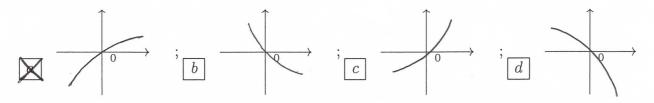
- 7. Sia f derivabile in x_0 . Allora: $\lim_{h \to 0} \frac{f(x_0 + \frac{h}{2}) f(x_0)}{h} = \frac{1}{2} f'(x_0); \quad \boxed{b} \lim_{h \to 0} \frac{f(x_0) f(x_0 + h)}{h} = f'(x_0); \quad \boxed{c} \lim_{h \to 0} \frac{f(x_0 + h) + f(x_0)}{h} = f'(x_0); \quad \boxed{d} \lim_{x \to x_0} \frac{f(x) + f(x_0)}{x x_0} = f'(x_0).$
- 8. Le soluzioni $z \in \mathbb{C}$ dell'equazione $|z|^2 + 3i\overline{z} z^2 = 0$ sono: a $z = 0, z = -\frac{1}{3}i;$ b $z = 0, z = -\frac{1}{3}i;$ b $z = 0, z = -\frac{1}{3}i;$ b $z = 0, z = -\frac{1}{3}i;$ c $z = 0, z = -\frac{1}{3}i;$ b $z = 0, z = -\frac{1}{3}i;$

ANALISI MATEMATICA 1 - Terzo appello		22 giugno 2017
Cognome:	Nome:	Matricola:
Corso di laurea:		

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.

1.
$$\lim_{x \to 0} \frac{\log[1 + 3\sin(x^2)]}{1 - \cos(2x)} = \boxed{a} - \frac{2}{3}; \boxed{x} \frac{3}{2}; \boxed{c} - \frac{3}{2}; \boxed{d} \frac{2}{3}.$$

- 2. Le soluzioni $z \in \mathbb{C}$ dell'equazione $3|z|^2 + 2i\overline{z} 3z^2 = 0$ sono: $z = 0, z = -\frac{1}{3}i;$ $z = 0, z = -\frac{1}{3}i;$ $z = 0, z = -\frac{1}{3}i;$ $z = 0, z = \pm \frac{1}{3} \frac{1}{3}i.$
- 3. Sia $q: [1, +\infty) \to \mathbf{R}$ una funzione continua tale che $q(x) \geq 0$ per ogni $x \nearrow 1$. Quale delle seguenti implicazioni è sempre vera? a se $\lim_{x \to +\infty} x^{-1}q(x) = 0$ allora $\int_{1}^{+\infty} q(x) \, dx$ è convergente ; a se $\lim_{x \to +\infty} xq(x) = 0$ allora $\lim_{x \to +\infty} xq(x) = 0$ allora $\lim_{x \to +\infty} xq(x) = 0$ se $\lim_{x \to +\infty} xq(x) = 0$ se $\lim_{x \to +\infty} x\sqrt{q(x)} = 0$ allora $\lim_{x \to +\infty} x\sqrt{q(x)} = 0$
- 4. I valori dei parametri $\alpha \in \mathbf{R}$ e $\beta \in \mathbf{R}$ per cui la funzione $f(x) = \begin{cases} x^3 3\beta x 2 & \text{per } x \geq 0 \\ \alpha x^3 \alpha x + 2\beta & \text{per } x < 0 \end{cases}$ è derivabile in \mathbf{R} sono: $\alpha = -3$, $\beta = -1$; $\alpha = -1$
- 5. Il valore massimo e il valore minimo della funzione $f(x) = \frac{x-2}{x^2+5}$ in [-2,5] sono: a min = $-\frac{1}{10}$, max = $\frac{1}{2}$; $min = -\frac{1}{2}$, max = $\frac{1}{6}$; a min = $-\frac{1}{6}$, max = $\frac{1}{2}$.
- 6. Sia f derivabile in x_0 . Allora: $\lim_{h \to 0} \frac{f(x_0 + \frac{h}{2}) f(x_0)}{h} = \frac{1}{2} f'(x_0); \quad \boxed{b} \lim_{h \to 0} \frac{f(x_0) f(x_0 + h)}{h} = f'(x_0); \quad \boxed{d} \lim_{x \to x_0} \frac{f(x) + f(x_0)}{x x_0} = f'(x_0).$
- 7. Il grafico vicino all'origine del polinomio di Taylor di secondo grado e di centro $x_0 = 0$ della funzione $f(x) = (x^2 3x)\sin(x 1)$ è:



8. Sia $f(t) = \frac{2t^2+2}{3-t}$, per $t \in (0,3)$. L'equazione della retta tangente al grafico della funzione inversa f^{-1} nel punto $(2, f^{-1}(2))$ è: $y = \frac{1}{3}x + \frac{1}{3}$; $y = \frac{1}{4}x + \frac{1}{2}$; $y = \frac{1}{8}x + \frac{5}{8}$; $y = \frac{1}{18}x + \frac{7}{9}$.

ANALISI MATEMATICA 1 - Terzo appello		22 giugno 2017
Cognome:	Nome:	Matricola:
Corso di laurea:		

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Il valore massimo e il valore minimo della funzione $f(x) = \frac{x-1}{x^2+3}$ in [-2,3] sono: a min = $-\frac{1}{6}$, max = $\frac{1}{2}$; b min = $-\frac{1}{10}$, max = $\frac{1}{2}$; c min = $-\frac{1}{2}$, max = $\frac{1}{10}$; $min = -\frac{1}{2}$, max = $\frac{1}{6}$.
- 2. Sia f derivabile in x_0 . Allora: a $\lim_{x \to x_0} \frac{f(x) f(x_0)}{x + x_0} = f'(x_0); \quad b$ $\lim_{h \to 0} \frac{f(x_0 + 2h) f(x_0)}{h} = 2f'(x_0); \quad c$ $\lim_{h \to 0} \frac{f(x_0 + h) f(x_0 h)}{h} = 2f'(x_0); \quad d$ $\lim_{h \to 0} \frac{f(x_0 + h) + f(x_0 h)}{h} = 2f'(x_0).$
- 3. Le soluzioni $z \in \mathbb{C}$ dell'equazione $|z|^2 + 3i\overline{z} + z^2 = 0$ sono: $a z = 0, z = \pm \frac{1}{3} \frac{1}{3}i;$ $b z = 0, z = -\frac{1}{3}i;$ $z = 0, z = \pm \frac{3}{2} \frac{3}{2}i;$ $z = 0, z = -\frac{3}{2}i.$
- 4. Sia $q:[1,+\infty)\to \mathbf{R}$ una funzione continua tale che $q(x)\geq 0$ per ogni $x\geqslant 1$. Quale delle seguenti implicazioni è sempre vera? a se $\lim_{x\to +\infty}q(x)=0$ allora $\int_1^{+\infty}q(x)\,dx$ è convergente ; a se $\lim_{x\to +\infty}x^2q(x)=0$ allora $\lim_{x\to +\infty}x^2q(x)=0$ allora $\lim_{x\to +\infty}x^2q(x)=0$ se $\lim_{x\to +\infty}x^2q(x)=0$ se $\lim_{x\to +\infty}x^2q(x)=0$ allora $\lim_{x\to +\infty}x^2q(x)=0$ se $\lim_{x\to +\infty}x^2q(x)=0$ se $\lim_{x\to +\infty}x^2q(x)=0$ allora $\lim_{x\to +\infty}x^2q(x)=0$ se $\lim_{x\to +\infty}x^2q(x)=0$ se $\lim_{x\to +\infty}x^2q(x)=0$ allora $\lim_{x\to +\infty}x^2q(x)=0$ se $\lim_{x\to +\infty$
- 5. Sia $f(t) = \frac{t^2+1}{2-t}$, per $t \in (0,2)$. L'equazione della retta tangente al grafico della funzione inversa f^{-1} nel punto $(2, f^{-1}(2))$ è: $a y = \frac{1}{18}x + \frac{7}{9}$; $b y = \frac{1}{3}x + \frac{1}{3}$; $y = \frac{1}{4}x + \frac{1}{2}$; $d y = \frac{1}{8}x + \frac{5}{8}$.
- 6. $\lim_{x \to 0} \frac{(1+x^2)^2 1}{1 e^{3\sin(x^2)}} = \boxed{a} \frac{2}{3}; \boxed{k} -\frac{2}{3}; \boxed{c} \frac{3}{2}; \boxed{d} -\frac{3}{2}.$
- 7. I valori dei parametri $\alpha \in \mathbf{R}$ e $\beta \in \mathbf{R}$ per cui la funzione $f(x) = \begin{cases} x^3 \alpha x + \beta & \text{per } x \geq 0 \\ -\alpha x^3 + 2\beta x 1 & \text{per } x < 0 \end{cases}$ è derivabile in \mathbf{R} sono: $\alpha = 2, \beta = -1;$ $\alpha = -3, \beta = -1;$ $\alpha = -1;$ α
- 8. Il grafico vicino all'origine del polinomio di Taylor di secondo grado e di centro $x_0=0$ della funzione $f(x)=(x^2+3x)\sin(x-2)$ è:

