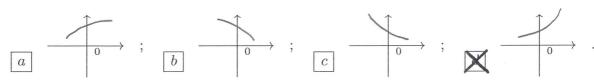
ANALISI MATEMATICA 1 - Terzo appello		22 giugno 2020
Cognome:	Nome:	Matricola:
Corso di laurea:		

- Scrivere in corsivo nel riquadro qui sopra::

 TANTO VA LA GATTA AL LARDO CHE CI LASCIA LO ZAMPINO
- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Se y(x) è la soluzione del problema di Cauchy: $\begin{cases} y'=e^{xy^2} \\ y(0)=1. \end{cases}$ Allora il grafico qualitativo di y(x) per x vicino a 0 è:

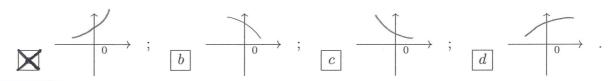


- 2. L'insieme dei valori $\alpha > 0$ per cui l'integrale improprio $\int_0^2 \frac{2x^{\alpha} + x^5}{1 \cos(x^2)}$ è convergente è dato da: $\boxed{a} \quad \alpha > 2; \quad \boxed{\alpha} \quad \alpha > 3; \quad \boxed{c} \quad \alpha > 4; \quad \boxed{d} \quad \alpha > 1.$
- 3. $\int_1^4 f(2t) dt = \begin{bmatrix} a \end{bmatrix} \int_1^4 f(x) dx$; $\begin{bmatrix} b \end{bmatrix} 2 \int_2^8 f(x) dx$; $\begin{bmatrix} c \end{bmatrix} 2 \int_{1/2}^2 f(x) dx$; $\begin{bmatrix} x \end{bmatrix} \frac{1}{2} \int_2^8 f(x) dx$.
- 4. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua tale che f(x) = f(-x). Quale delle seguenti affermazioni è sempre vera? $\prod_{-1}^{1} f(x)dx = 2 \int_{0}^{1} f(x)dx$; $\begin{bmatrix} b \end{bmatrix} \int_{-1}^{1} f(x)dx = \int_{0}^{1} f^{2}(x)dx$; $\begin{bmatrix} c \end{bmatrix} \int_{0}^{1} f(x)dx = 0$; $\begin{bmatrix} d \end{bmatrix} \int_{-1}^{1} f(x)dx = 0$.
- 5. Se 2/3 < q < 1 allora: $a \sum_{n=0}^{+\infty} q^n < 3$; $b \sum_{n=0}^{+\infty} q^n = \int_{2/3}^{+\infty} q^x dx$; $c \sum_{n=0}^{+\infty} q^n = \infty$; $\sum_{n=0}^{+\infty} q^n > 3$.
- 6. Sia $f:[-1,0) \to \mathbf{R}$ una funzione continua tale che $\lim_{x\to 0^-} f(x) = +\infty$. Allora il seguente enunciato " $\forall \, \epsilon > 0 \, \exists \, \delta > 0$ tale che se $-\delta < x < 0$ allora $\left| \int_{-1}^x f(t) \, dt 5 \right| < \epsilon$ " significa: $\boxed{a} \lim_{x\to 0^-} f(x) = 5$; $\boxed{b} \lim_{x\to -1^+} \int_{-1}^x f(t) \, dt = 5$; $\boxed{c} \lim_{x\to 0^-} \int_x^0 f(t) \, dt = 5$; $\boxed{c} \lim_{x\to 0^-} \int_x^0 f(t) \, dt = 5$.
- 7. Sia $f(x) = |\log(\frac{x}{5})|$ per x > 1 e f(x) = ax + b per $x \le 1$. Per quali valori a, b la funzione f è continua e derivabile per x = 1? \boxed{a} $a = -\frac{1}{5}, b = 1 + \log 5$; \boxed{b} $a = -\frac{1}{5}, b = \frac{1}{5} + \log \frac{1}{5}$; \boxed{c} $a = \frac{1}{5}, b = -\frac{1}{5} + \log \frac{1}{5}$; \boxed{x} $a = -1, b = 1 + \log 5$.
- 8. Se $f(t) = t^2$ e $g(s) = e^s$ allora nel piano cartesiano (x, y) l'equazione della retta tangente al grafico della funzione composta $(g \circ f)(t)$ nel punto di ascissa $t_0 = 1$ è: $a y = 2e^2x e^2$; $b y = 2ex e^2$; $c y = 2e^2x e$; y = 2ex e.

ANALISI MATEMATICA 1 - Terzo appello		22 giugno 2020
Cognome:	Nome:	Matricola:
Corso di laurea:		

- Scrivere in corsivo nel riquadro qui sopra::

 TANTO VA LA GATTA AL LARDO CHE CI LASCIA LO ZAMPINO
- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Se $f(t) = t^2$ e $g(s) = e^s$ allora nel piano cartesiano (x,y) l'equazione della retta tangente al grafico della funzione composta $(g \circ f)(t)$ nel punto di ascissa $t_0 = 1$ è: $a y = 2e^2x e$; $y = 2e^2x e^2$; $y = 2e^2x e^2$; $y = 2e^2x e^2$.
- 2. Se y(x) è la soluzione del problema di Cauchy: $\begin{cases} y'=e^{xy^2} \\ y(0)=1. \end{cases}$ Allora il grafico qualitativo di y(x) per x vicino a 0 è:



- 3. Sia $f:[-1,0) \to \mathbf{R}$ una funzione continua tale che $\lim_{x\to 0^-} f(x) = +\infty$. Allora il seguente enunciato " $\forall \epsilon > 0 \ \exists \, \delta > 0$ tale che se $-\delta < x < 0$ allora $\left| \int_{-1}^x f(t) \, dt 5 \right| < \epsilon$ " significa: $a \lim_{x\to 0^-} \int_x^0 f(t) \, dt = 5$; $f(t) \int_{-1}^0 f(t) \, dt = 5$;
- 4. L'insieme dei valori $\alpha > 0$ per cui l'integrale improprio $\int_0^2 \frac{3x^{\alpha} + x^4}{e^{x^3} 1}$ è convergente è dato da: $\boxed{a} \quad \alpha > 4; \quad \boxed{b} \quad \alpha > 1; \quad \boxed{\alpha} \quad \alpha > 2; \quad \boxed{d} \quad \alpha > 3.$
- 5. Sia $f(x) = |\log(\frac{x}{3})|$ per x > 1 e f(x) = ax + b per $x \le 1$. Per quali valori a, b la funzione f è continua e derivabile per x = 1? \boxed{a} $a = \frac{1}{3}, b = -\frac{1}{3} + \log \frac{1}{3};$ \boxed{a} $a = -1, b = 1 + \log 3;$ \boxed{c} $a = -\frac{1}{3}, b = 1 + \log 3;$ \boxed{d} $a = -\frac{1}{3}, b = \frac{1}{3} + \log \frac{1}{3}.$
- 6. Se 3/4 < q < 1 allora: $a \sum_{n=0}^{+\infty} q^n = \infty; \sum_{n=0}^{+\infty} q^n > 4; c \sum_{n=0}^{+\infty} q^n < 4;$ $b \sum_{n=0}^{+\infty} q^n = \int_{3/4}^{+\infty} q^x dx.$
- 7. $\int_{1}^{4} f(2t) dt = \begin{bmatrix} a \end{bmatrix} 2 \int_{1/2}^{2} f(x) dx; \quad \boxed{2} \int_{2}^{8} f(x) dx; \quad \boxed{c} \int_{1}^{4} f(x) dx; \quad \boxed{d} 2 \int_{2}^{8} f(x) dx.$
- 8. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua tale che f(x) = f(-x). Quale delle seguenti affermazioni è sempre vera? $a \int_0^1 f(x) dx = 0$; $b \int_{-1}^1 f(x) dx = 0$; $\int_{-1}^1 f(x) dx = 2 \int_0^1 f(x) dx$; $d \int_{-1}^1 f(x) dx = \int_0^1 f^2(x) dx$.

ANALISI MATEMATICA 1 - Terzo appello		22 giugno 2020
Cognome:	Nome:	Matricola:
Corso di laurea:		

- Scrivere in corsivo nel riquadro qui sopra::

 TANTO VA LA GATTA AL LARDO CHE CI LASCIA LO ZAMPINO
- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25
- 1. Sia $f(x) = |\log(\frac{x}{2})|$ per x > 1 e f(x) = ax + b per $x \le 1$. Per quali valori a, b la funzione f è continua e derivabile per x = 1? \boxed{a} $a = -\frac{1}{2}, b = \frac{1}{2} + \log \frac{1}{2};$ \boxed{b} $a = \frac{1}{2}, b = -\frac{1}{2} + \log \frac{1}{2};$ $\boxed{a} = -1, b = 1 + \log 2;$ \boxed{d} $a = -\frac{1}{2}, b = 1 + \log 2.$
- 2. Se 2/3 < q < 1 allora: a $\sum_{n=0}^{+\infty} q^n = \int_{2/3}^{+\infty} q^x dx$; b $\sum_{n=0}^{+\infty} q^n = \infty$; $\sum_{n=0}^{+\infty} q^n > 3$; d $\sum_{n=0}^{+\infty} q^n < 3$.
- 3. Se y(x) è la soluzione del problema di Cauchy: $\begin{cases} y'=e^{xy^2} \\ y(0)=1. \end{cases}$ Allora il grafico qualitativo di y(x) per x vicino a 0 è:

- 4. Sia $f:(0,1]\to \mathbf{R}$ una funzione continua tale che $\lim_{x\to 0^+} f(x)=+\infty$. Allora il seguente enunciato " $\forall \, \epsilon > 0 \, \exists \, \delta > 0$ tale che se $0 < x < \delta$ allora $\left| \int_x^1 f(t) \, dt 5 \right| < \epsilon$ " significa: $a \lim_{x\to 1^-} \int_x^1 f(t) \, dt = 5$; $b \lim_{x\to 0^+} \int_0^x f(t) \, dt = 5$; $c \lim_{x\to 0^+} \int_0^1 f(t) \, dt = 5$; $c \lim_{x\to 0^+} \int_0^1 f(t) \, dt = 5$;
- 5. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua tale che f(x) = -f(-x). Quale delle seguenti affermazioni è sempre vera? $\boxed{a} \int_{-1}^{1} f(x) dx = \int_{0}^{1} f^{2}(x) dx; \qquad \boxed{b} \int_{0}^{1} f(x) dx = 0;$ $\boxed{d} \int_{-1}^{1} f(x) dx = 2 \int_{0}^{1} f(x) dx.$
- 6. Se $f(t) = t^2$ e $g(s) = e^s$ allora nel piano cartesiano (x, y) l'equazione della retta tangente al grafico della funzione composta $(f \circ g)(s)$ nel punto di ascissa $s_0 = 1$ è: $a y = 2ex e^2$; $b y = 2e^2x e$; c y = 2ex e; $v = 2e^2x e^2$.
- 7. L'insieme dei valori $\alpha>0$ per cui l'integrale improprio $\int_0^2 \frac{x^\alpha+2x^3}{\sin^2 x}$ è convergente è dato da: $\boxed{a} \ \alpha>3; \ \boxed{b} \ \alpha>4; \ \boxed{\alpha} \ \alpha>2.$
- 8. $\int_{1}^{4} f(2t) dt = \begin{bmatrix} a \end{bmatrix} 2 \int_{2}^{8} f(x) dx; \quad \boxed{b} 2 \int_{1/2}^{2} f(x) dx; \quad \boxed{d} \int_{2}^{8} f(x) dx; \quad \boxed{d} \int_{1}^{4} f(x) dx.$

ANALISI MATEMATICA 1 - Terzo appello		22 giugno 2020
Cognome:	Nome:	Matricola:
Corso di laurea:		

• Scrivere in corsivo nel riquadro qui sopra:: TANTO VA LA GATTA AL LARDO CHE CI LASCIA LO ZAMPINO

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua tale che f(x) = f(-x). Quale delle seguenti affermazioni è sempre vera? $\prod_{n=1}^{\infty} \int_{-1}^{1} f(x) dx = 2 \int_{0}^{1} f(x) dx$; $\boxed{b} \int_{-1}^{1} f(x) dx = \int_{0}^{1} f^{2}(x) dx$; $\boxed{c} \int_{0}^{1} f(x) dx = 0$; $\boxed{d} \int_{-1}^{1} f(x) dx = 0$.
- 2. Se $f(t) = t^2$ e $g(s) = e^s$ allora nel piano cartesiano (x,y) l'equazione della retta tangente al grafico della funzione composta $(g \circ f)(t)$ nel punto di ascissa $t_0 = 1$ è: $a y = 2e^2x e^2$; $b y = 2ex e^2$; $c y = 2e^2x e$; y = 2ex e.
- 3. Se 3/4 < q < 1 allora: $a \sum_{n=0}^{+\infty} q^n < 4$; $b \sum_{n=0}^{+\infty} q^n = \int_{3/4}^{+\infty} q^x dx$; $c \sum_{n=0}^{+\infty} q^n = \infty$; $\sum_{n=0}^{+\infty} q^n > 4$.
- 4. Se y(x) è la soluzione del problema di Cauchy: $\begin{cases} y' = e^{xy^2} \\ y(0) = 1. \end{cases}$ Allora il grafico qualitativo di y(x) per x vicino a 0 è:

- 5. $\int_{1}^{4} f(2t) dt = \boxed{a} \int_{1}^{4} f(x) dx; \boxed{b} 2 \int_{2}^{8} f(x) dx; \boxed{c} 2 \int_{1/2}^{2} f(x) dx; \boxed{k} \frac{1}{2} \int_{2}^{8} f(x) dx.$
- 6. Sia $f(x) = |\log(\frac{x}{3})|$ per x > 1 e f(x) = ax + b per $x \le 1$. Per quali valori a, b la funzione f è continua e derivabile per x = 1? \boxed{a} $a = -\frac{1}{3}, b = 1 + \log 3$; \boxed{b} $a = -\frac{1}{3}, b = \frac{1}{3} + \log \frac{1}{3}$; \boxed{c} $a = \frac{1}{3}, b = -\frac{1}{3} + \log \frac{1}{3}$; \boxed{d} $a = -1, b = 1 + \log 3$.
- 7. Sia $f:[-1,0) \to \mathbf{R}$ una funzione continua tale che $\lim_{x\to 0^-} f(x) = +\infty$. Allora il seguente enunciato " $\forall \epsilon > 0 \; \exists \, \delta > 0$ tale che se $-\delta < x < 0$ allora $\left| \int_{-1}^x f(t) \, dt 5 \right| < \epsilon$ " significa: $\boxed{a} \lim_{x\to 0^-} f(x) = 5$; $\boxed{b} \lim_{x\to -1^+} \int_{-1}^x f(t) \, dt = 5$; $\boxed{c} \lim_{x\to 0^-} \int_x^0 f(t) \, dt = 5$; $\boxed{c} \lim_{x\to 0^-} \int_x^0 f(t) \, dt = 5$.
- 8. L'insieme dei valori $\alpha > 0$ per cui l'integrale improprio $\int_0^2 \frac{2x^{\alpha} + x^5}{1 \cos(x^2)}$ è convergente è dato da: $\alpha > 2$; $\alpha > 3$; $\alpha > 3$; $\alpha > 4$; $\alpha > 1$.

ANALISI MATEMATICA 1 - Terzo appello		22 giugno 2020
Cognome:	Nome:	Matricola:
Corso di laurea:		

- Scrivere in corsivo nel riquadro qui sopra::

 TANTO VA LA GATTA AL LARDO CHE CI LASCIA LO ZAMPINO
- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Sia $f:(0,1]\to \mathbf{R}$ una funzione continua tale che $\lim_{x\to 0^+} f(x)=+\infty$. Allora il seguente enunciato " $\forall \epsilon>0$ $\exists \delta>0$ tale che se $0< x<\delta$ allora $\left|\int_x^1 f(t)\,dt-5\right|<\epsilon$ " significa: a $\lim_{x\to 1^-}\int_x^1 f(t)\,dt=5$; b $\lim_{x\to 0^+}\int_0^x f(t)\,dt=5$; c $\int_0^1 f(t)\,dt=5$; d $\lim_{x\to 0^+}f(x)=5$.
- 2. $\int_1^4 f(2t) dt = \begin{bmatrix} a \end{bmatrix} 2 \int_2^8 f(x) dx$; $\begin{bmatrix} b \end{bmatrix} 2 \int_{1/2}^2 f(x) dx$; $\begin{bmatrix} \frac{1}{2} \int_2^8 f(x) dx$; $\begin{bmatrix} d \end{bmatrix} \int_1^4 f(x) dx$.
- 3. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua tale che f(x) = -f(-x). Quale delle seguenti affermazioni è sempre vera? $\boxed{a} \int_{-1}^{1} f(x) dx = \int_{0}^{1} f^{2}(x) dx; \qquad \boxed{b} \int_{0}^{1} f(x) dx = 0;$ $\boxed{d} \int_{-1}^{1} f(x) dx = 2 \int_{0}^{1} f(x) dx.$
- 4. Sia $f(x) = |\log(\frac{x}{7})|$ per x > 1 e f(x) = ax + b per $x \le 1$. Per quali valori a, b la funzione f è continua e derivabile per x = 1? \boxed{a} $a = -\frac{1}{7}, b = \frac{1}{7} + \log \frac{1}{7};$ \boxed{b} $a = \frac{1}{7}, b = -\frac{1}{7} + \log \frac{1}{7};$ \boxed{d} $a = -1, b = 1 + \log 7;$ \boxed{d} $a = -\frac{1}{7}, b = 1 + \log 7.$
- 5. Se y(x) è la soluzione del problema di Cauchy: $\begin{cases} y' = e^{xy^2} \\ y(0) = 1. \end{cases}$ Allora il grafico qualitativo di y(x) per x vicino a 0 è:

- 6. L'insieme dei valori $\alpha>0$ per cui l'integrale improprio $\int_0^2 \frac{x^\alpha+2x^3}{\sin^2 x}$ è convergente è dato da: a > 3; $b \alpha > 4$; $\alpha > 1$; $d \alpha > 2$.
- 7. Se $f(t) = t^2$ e $g(s) = e^s$ allora nel piano cartesiano (x, y) l'equazione della retta tangente al grafico della funzione composta $(f \circ g)(s)$ nel punto di ascissa $s_0 = 1$ è: $a y = 2ex e^2$; $b y = 2e^2x e$; c y = 2ex e; $v = 2e^2x e^2$.
- 8. Se 3/4 < q < 1 allora: $a \sum_{n=0}^{+\infty} q^n = \int_{3/4}^{+\infty} q^x dx$; $b \sum_{n=0}^{+\infty} q^n = \infty$; $\sum_{n=0}^{+\infty} q^n > 4$; $a \sum_{n=0}^{+\infty} q^n < 4$.

ANALISI MATEMATICA 1 - Terzo appello		22 giugno 2020
Cognome:	Nome:	Matricola:
Corso di laurea:		

- Scrivere in corsivo nel riquadro qui sopra::

 TANTO VA LA GATTA AL LARDO CHE CI LASCIA LO ZAMPINO
- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Se 4/5 < q < 1 allora: $\sum_{n=0}^{+\infty} q^n > 5$; $b \sum_{n=0}^{+\infty} q^n < 5$; $c \sum_{n=0}^{+\infty} q^n = \int_{4/5}^{+\infty} q^x dx$; $d \sum_{n=0}^{+\infty} q^n = \infty$.
- 2. Sia $f:(0,1]\to \mathbf{R}$ una funzione continua tale che $\lim_{x\to 0^+} f(x)=+\infty$. Allora il seguente enunciato " $\forall \, \epsilon > 0 \, \exists \, \delta > 0$ tale che se $0 < x < \delta$ allora $\left| \int_x^1 f(t) \, dt 5 \right| < \epsilon$ " significa: $\sum \int_0^1 f(t) \, dt = 5$; $b \lim_{x\to 0^+} f(x) = 5$; $c \lim_{x\to 1^-} \int_x^1 f(t) \, dt = 5$; $c \lim_{x\to 1^-} \int_x^1 f(t) \, dt = 5$;
- 3. L'insieme dei valori $\alpha > 0$ per cui l'integrale improprio $\int_0^2 \frac{x^{\alpha} + 3x^6}{\log(1 + x^5)}$ è convergente è dato da: $\boxed{a} \quad \alpha > 1; \quad \boxed{b} \quad \alpha > 2; \quad \boxed{c} \quad \alpha > 3; \quad \boxed{\chi} \quad \alpha > 4.$
- 4. $\int_{1}^{4} f(2t) dt = \left[\sum_{1}^{4} \int_{2}^{8} f(x) dx; \quad b \right] \int_{1}^{4} f(x) dx; \quad c \right] 2 \int_{2}^{8} f(x) dx; \quad d = 2 \int_{1/2}^{2} f(x) dx.$
- 5. Se $f(t) = t^2$ e $g(s) = e^s$ allora nel piano cartesiano (x, y) l'equazione della retta tangente al grafico della funzione composta $(f \circ g)(s)$ nel punto di ascissa $s_0 = 1$ è: a y = 2ex e; $y = 2e^2x e^2$; $y = 2e^2x e^2$; $y = 2e^2x e^2$; $y = 2e^2x e^2$
- 6. Se y(x) è la soluzione del problema di Cauchy: $\begin{cases} y'=e^{xy^2} \\ y(0)=1. \end{cases}$ Allora il grafico qualitativo di y(x) per x vicino a 0 è:

- 8. Sia $f(x) = |\log(\frac{x}{4})|$ per x > 1 e f(x) = ax + b per $x \le 1$. Per quali valori a, b la funzione f è continua e derivabile per x = 1? $a = -1, b = 1 + \log 4$; $a = -\frac{1}{4}, b = \frac{1}{4} + \log \frac{1}{4}$; $a = -\frac{1}{4}, b = -\frac{1}{4} + \log \frac{1}{4}$.

ANALISI MATEMATICA 1 - Terzo appello		22 giugno 2020
Cognome:	Nome:	Matricola:
Corso di laurea:		

- Scrivere in corsivo nel riquadro qui sopra::

 TANTO VA LA GATTA AL LARDO CHE CI LASCIA LO ZAMPINO
- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. $\int_{1}^{4} f(2t) dt = \left[\sum_{1}^{4} \int_{2}^{8} f(x) dx; \quad b \right] \int_{1}^{4} f(x) dx; \quad c \quad 2 \int_{2}^{8} f(x) dx; \quad d \quad 2 \int_{1/2}^{2} f(x) dx.$
- 2. Sia $f(x) = |\log(\frac{x}{8})|$ per x > 1 e f(x) = ax + b per $x \le 1$. Per quali valori a, b la funzione f è continua e derivabile per x = 1? $\boxed{\mathbf{a}} = -1, b = 1 + \log 8; \boxed{b} = a = -\frac{1}{8}, b = 1 + \log 8;$ $\boxed{c} = a = -\frac{1}{8}, b = \frac{1}{8} + \log \frac{1}{8}; \boxed{d} = a = \frac{1}{8}, b = -\frac{1}{8} + \log \frac{1}{8}.$
- 3. Se $f(t) = t^2$ e $g(s) = e^s$ allora nel piano cartesiano (x,y) l'equazione della retta tangente al grafico della funzione composta $(f \circ g)(s)$ nel punto di ascissa $s_0 = 1$ è: a y = 2ex e; $y = 2e^2x e^2$; $y = 2e^2x e^2$; $y = 2e^2x e^2$
- 4. Se 2/3 < q < 1 allora: $\sum_{n=0}^{+\infty} q^n > 3$; $b \sum_{n=0}^{+\infty} q^n < 3$; $c \sum_{n=0}^{+\infty} q^n = \int_{2/3}^{+\infty} q^x dx$; $d \sum_{n=0}^{+\infty} q^n = \infty$.
- 5. L'insieme dei valori $\alpha > 0$ per cui l'integrale improprio $\int_0^2 \frac{x^{\alpha} + 3x^6}{\log(1 + x^5)}$ è convergente è dato da: $\boxed{a} \ \alpha > 1; \ \boxed{b} \ \alpha > 2; \ \boxed{c} \ \alpha > 3; \ \boxed{\chi} \ \alpha > 4.$
- 7. Se y(x) è la soluzione del problema di Cauchy: $\begin{cases} y'=e^{xy^2} \\ y(0)=1. \end{cases}$ Allora il grafico qualitativo di y(x) per x vicino a 0 è:

8. Sia $f:(0,1]\to \mathbf{R}$ una funzione continua tale che $\lim_{x\to 0^+} f(x)=+\infty$. Allora il seguente enunciato " $\forall \, \epsilon > 0 \, \exists \, \delta > 0$ tale che se $0 < x < \delta$ allora $\left| \int_x^1 f(t) \, dt - 5 \right| < \epsilon$ " significa: $\int_0^1 f(t) \, dt = 5 \, ; \qquad \boxed{b} \lim_{x\to 0^+} f(x) = 5 \, ; \qquad \boxed{c} \lim_{x\to 1^-} \int_x^1 f(t) \, dt = 5 \, ; \qquad \boxed{d} \lim_{x\to 0^+} \int_0^x f(t) \, dt = 5 \, .$

ANALISI MATEMATICA 1 - Terzo appello		22 giugno 2020
Cognome:	Nome:	Matricola:
Corso di laurea:		

- Scrivere in corsivo nel riquadro qui sopra::

 TANTO VA LA GATTA AL LARDO CHE CI LASCIA LO ZAMPINO
- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. L'insieme dei valori $\alpha>0$ per cui l'integrale improprio $\int_0^2 \frac{3x^{\alpha}+x^4}{e^{x^3}-1}$ è convergente è dato da: $\boxed{a} \ \alpha>4; \ \boxed{b} \ \alpha>1; \ \boxed{\alpha} \ \alpha>3.$
- 2. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua tale che f(x) = f(-x). Quale delle seguenti affermazioni è sempre vera? $\boxed{a} \int_0^1 f(x) dx = 0; \quad \boxed{b} \int_{-1}^1 f(x) dx = 0; \quad \boxed{\mathbf{K}} \int_{-1}^1 f(x) dx = 2 \int_0^1 f(x) dx; \quad \boxed{d} \int_{-1}^1 f(x) dx = \int_0^1 f^2(x) dx.$
- 3. Sia $f(x) = |\log(\frac{x}{6})|$ per x > 1 e f(x) = ax + b per $x \le 1$. Per quali valori a, b la funzione f è continua e derivabile per x = 1? \boxed{a} $a = \frac{1}{6}, b = -\frac{1}{6} + \log \frac{1}{6};$ \boxed{x} $a = -1, b = 1 + \log 6;$ \boxed{c} $a = -\frac{1}{6}, b = 1 + \log 6;$ \boxed{d} $a = -\frac{1}{6}, b = \frac{1}{6} + \log \frac{1}{6}.$
- 4. Se $f(t) = t^2$ e $g(s) = e^s$ allora nel piano cartesiano (x,y) l'equazione della retta tangente al grafico della funzione composta $(g \circ f)(t)$ nel punto di ascissa $t_0 = 1$ è: $a y = 2e^2x e$; $y = 2e^2x e^2$; $y = 2e^2x e^2$; $y = 2e^2x e^2$.
- 5. Sia $f:[-1,0) \to \mathbf{R}$ una funzione continua tale che $\lim_{x\to 0^-} f(x) = +\infty$. Allora il seguente enunciato " $\forall \epsilon > 0 \ \exists \, \delta > 0$ tale che se $-\delta < x < 0$ allora $\left| \int_{-1}^x f(t) \, dt 5 \right| < \epsilon$ " significa: $\boxed{a} \lim_{x\to 0^-} \int_x^0 f(t) \, dt = 5$; $\boxed{c} \lim_{x\to 0^-} f(x) = 5$; $\boxed{d} \lim_{x\to -1^+} \int_{-1}^x f(t) \, dt = 5$.
- 6. $\int_{1}^{4} f(2t) dt = \boxed{a} 2 \int_{1/2}^{2} f(x) dx; \quad \boxed{X} \frac{1}{2} \int_{2}^{8} f(x) dx; \quad \boxed{c} \int_{1}^{4} f(x) dx; \quad \boxed{d} 2 \int_{2}^{8} f(x) dx.$
- 7. Se 4/5 < q < 1 allora: $a \sum_{n=0}^{+\infty} q^n = \infty; \sum_{n=0}^{+\infty} q^n > 5; c \sum_{n=0}^{+\infty} q^n < 5; d \sum_{n=0}^{+\infty} q^n = \int_{4/5}^{+\infty} q^x dx.$
- 8. Se y(x) è la soluzione del problema di Cauchy: $\begin{cases} y'=e^{xy^2} \\ y(0)=1. \end{cases}$ Allora il grafico qualitativo di y(x) per x vicino a 0 è:

