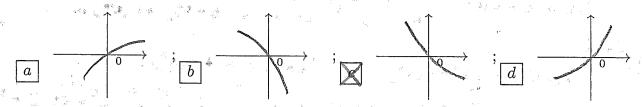
ANALISI MATEMATICA 1 - Primo appello		23 gennaio 2015
Cognome:	Nome:	Matricola:
Corso di laurea:		Test Es1 Es2 Es3

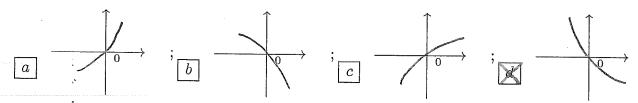
- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Vicino all'origine il grafico qualitativo della soluzione y(x) di $\begin{cases} y' = 3y^3 2y + \log(1+y) 1 \\ y(0) = 0 \end{cases}$



- 2. Sia $\frac{a_0}{2} + \sum_{k=1}^{\infty} [a_k \cos(kx) + b_k \sin(kx)]$ la serie di Fourier della funzione $f(x) = \frac{x|x|}{3}$ nell'intervallo $(-\pi, \pi)$. Allora $b_4 = \begin{bmatrix} a \\ \end{bmatrix} \pi$; $\begin{bmatrix} b \\ \end{bmatrix} \frac{3}{2}\pi$; $\begin{bmatrix} -\frac{\pi}{6} \\ \end{bmatrix}$; $\begin{bmatrix} d \\ \end{bmatrix} \frac{\pi}{4}$.
- 3. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua. Se $\int_0^3 f(x) dx = 1$ è sicuramente vero che esiste $x_0 \in [0,3]$ tale che: $\begin{array}{c} a \\ 2 < f(x_0) + \frac{1}{f(x_0)} < 3; \\ \hline d \\ 4 < f(x_0) + \frac{1}{f(x_0)} < 5. \end{array}$ 3 < $f(x_0) + \frac{1}{f(x_0)} < 6;$ \boxed{a} 3 < $f(x_0) + \frac{1}{f(x_0)} < 4;$
- 4. Se la retta tangente al grafico della funzione f in (0, f(0)) ha equazione y = f(0), allora $\lim_{x \to 0} \frac{f(x) f(0) + xf(0)}{x} = [x] f(0); [b] + \infty; [c] f'(0); [d] 0.$
- 5. Sia $p: \mathbf{R} \to \mathbf{R}$ una funzione continua tale che $p(0) = 0, p(1) = \frac{1}{4}$. Per quale funzione f l'equazione f(x) = p(x) ha sicuramente soluzione in [0,1]? a $f(x) = 3 x^3$; b $f(x) = x^2 + \frac{1}{2}$; $f(x) = x^2 \frac{1}{2}$; d $f(x) = x^3 2$.
- 6. I numeri complessi z soluzioni dell'equazione $2z\overline{z} + 2z^2 = 8 4i$ sono: a 1 + 2i, 1 2i; b 2 + i, 2 i; $a \sqrt{2} + \frac{1}{\sqrt{2}}i, \sqrt{2} \frac{1}{\sqrt{2}}i;$ $a \frac{1}{\sqrt{2}}i, \frac{1}{\sqrt{2}}i,$
- 7. La funzione $k(x) = e^{x\sqrt{2x+1}}$ è crescente nel suo dominio di definizione per: a $x \ge -\frac{1}{6}$; b $x \le \frac{1}{6}$; c $x \le \frac{1}{3}$; $x \ge -\frac{1}{3}$.
- 8. Siano $f(x) = \sqrt{x^2 + 5}$ e g(t) = t 2. La retta tangente al grafico della funzione $(g \circ f)(x)$ nel punto $x_0 = 2$ è: a $y = \frac{\sqrt{3}}{2}x \frac{5}{2}$; b $y = \frac{6}{5}x + \frac{12}{5}$; $y = \frac{2}{3}x \frac{1}{3}$; d $y = \sqrt{2}x + 4$.

ANALISI MATEMATICA 1 - Primo appello		23 gennaio 2015
Cognome:	Nome:	Matricola:
Corso di laurea:		
<u> </u>		Test Es1 Es2 Es3

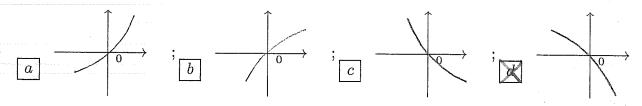
- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Siano $f(x) = \sqrt{x^2 + 1}$ e g(t) = t 3. La retta tangente al grafico della funzione $(g \circ f)(x)$ nel punto $x_0 = \sqrt{3}$ è: $a y = \frac{2}{3}x \frac{1}{3}$; $b y = \sqrt{2}x + 4$; $y = \frac{\sqrt{3}}{2}x \frac{5}{2}$; $d y = \frac{6}{5}x + \frac{12}{5}$.
- 2. Vicino all'origine il grafico qualitativo della soluzione y(x) di $\begin{cases} y' = 3y^3 2y + \sin y 1 \\ y(0) = 0 \end{cases}$ è:



- 3. I numeri complessi z soluzioni dell'equazione $z\bar{z}+z^2=2-4i$ sono: $a -\sqrt{2}+\frac{1}{\sqrt{2}}i, \sqrt{2}-\frac{1}{\sqrt{2}}i;$ $b -\frac{1}{\sqrt{2}}+\sqrt{2}i, \frac{1}{\sqrt{2}}-\sqrt{2}i;$ a -1+2i, 1-2i; a -2+i, 2-i.
- 4. Sia $\frac{a_0}{2} + \sum_{k=1}^{\infty} [a_k \cos(kx) + b_k \sin(kx)]$ la serie di Fourier della funzione f(x) = 2x|x| nell'intervallo $(-\pi, \pi)$. Allora $b_4 = \begin{bmatrix} a \\ -\frac{\pi}{6} \end{bmatrix}$; $\begin{bmatrix} b \\ -\frac{\pi}{4} \end{bmatrix}$; $\begin{bmatrix} -\pi \\ -\frac{3}{2} \end{bmatrix}$.
- 5. La funzione $k(x) = e^{x\sqrt{4x+1}}$ è crescente nel suo dominio di definizione per: a $x \le \frac{1}{3}$; b $x \ge -\frac{1}{3}$; $x \ge -\frac{1}{6}$; d $x \le \frac{1}{6}$.
- 6. Sia $p: \mathbf{R} \to \mathbf{R}$ una funzione continua tale che $p(0) = 2, p(1) = \frac{5}{2}$. Per quale funzione f l'equazione f(x) = p(x) ha sicuramente soluzione in [0,1]? a $f(x) = x^2 \frac{1}{2}$; b $f(x) = x^3 2$; $f(x) = 3 x^3$; d $f(x) = x^2 + \frac{1}{2}$.
- 7. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua. Se $\int_0^2 f(x) dx = 1$ è sicuramente vero che esiste $x_0 \in [0, 2]$ tale che: a<
- 8. Se la retta tangente al grafico della funzione f in (0, f(0)) ha coefficiente angolare m, allora $\lim_{x\to 0} \frac{f(x) mx f(0)}{x} = \boxed{a} f'(0); \boxed{c} f(0); \boxed{d} + \infty.$

ANALISI MATEMATICA 1 - Primo appello		23 gennaio 2015
Cognome:	Nome:	Matricola:
Corso di laurea:		Test Es1 Es2 Es3

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. La funzione $k(x) = e^{x\sqrt{1-2x}}$ è crescente nel suo dominio di definizione per: a $x \leq \frac{1}{6}$; $x \leq \frac{1}{3}$; $x \leq \frac{1}{3}$; $x \leq \frac{1}{3}$; $x \leq \frac{1}{3}$.
- 2. Sia $p: \mathbf{R} \to \mathbf{R}$ una funzione continua tale che $p(0) = 2, p(1) = \frac{5}{2}$. Per quale funzione f l'equazione f(x) = p(x) ha sicuramente soluzione in [0,1]? a $f(x) = x^2 + \frac{1}{2}$; b $f(x) = x^2 \frac{1}{2}$; c $f(x) = x^3 2$; $f(x) = 3 x^3$.
- 3. Vicino all'origine il grafico qualitativo della soluzione y(x) di $\begin{cases} y'=3y^3+2y-\log(1+y)-1\\ y(0)=0 \end{cases}$ è:

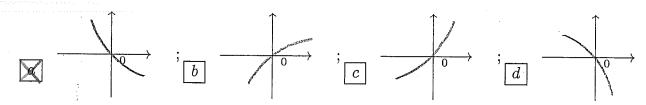


- 4. I numeri complessi z soluzioni dell'equazione $2\bar{z}z 2z^2 = 8 + 4i$ sono: $\boxed{a} -2 + i, \ 2 i;$ $\boxed{b} -\sqrt{2} + \frac{1}{\sqrt{2}}i, \ \sqrt{2} \frac{1}{\sqrt{2}}i;$ $\boxed{k} -\frac{1}{\sqrt{2}} + \sqrt{2}i, \ \frac{1}{\sqrt{2}} \sqrt{2}i;$ $\boxed{d} -1 + 2i, \ 1 2i.$
- 5. Se la retta tangente al grafico della funzione f in (0, f(0)) ha coefficiente angolare m, allora $\lim_{x\to 0} \frac{f(x) mx f(0)}{x} = \boxed{a} + \infty; \boxed{b} f'(0); \boxed{d} f(0).$
- 6. Siano $f(x) = \sqrt{x^2 + 1}$ e g(t) = t 3. La retta tangente al grafico della funzione $(g \circ f)(x)$ nel punto $x_0 = \sqrt{3}$ è: a $y = \frac{6}{5}x + \frac{12}{5}$; b $y = \frac{2}{3}x \frac{1}{3}$; c $y = \sqrt{2}x + 4$; $y = \frac{\sqrt{3}}{2}x \frac{5}{2}$.
- 7. Sia $\frac{a_0}{2} + \sum_{k=1}^{\infty} [a_k \cos(kx) + b_k \sin(kx)]$ la serie di Fourier della funzione f(x) = 2x|x| nell'intervallo $(-\pi, \pi)$. Allora $b_4 = \begin{bmatrix} a \end{bmatrix} \frac{3}{2}\pi$; $\begin{bmatrix} b \end{bmatrix} \frac{\pi}{6}$; $\begin{bmatrix} c \end{bmatrix} \frac{\pi}{4}$; $\begin{bmatrix} \pi \end{bmatrix} \pi$.
- 8. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua. Se $\int_0^3 f(x) dx = 1$ è sicuramente vero che esiste $x_0 \in [0,3]$ tale che: $\boxed{a} \ 5 < f(x_0) + \frac{1}{f(x_0)} < 6; \qquad \boxed{3} \ 3 < f(x_0) + \frac{1}{f(x_0)} < 4; \qquad \boxed{c} \ 4 < f(x_0) + \frac{1}{f(x_0)} < 5;$

$$\boxed{d}$$
 2 < $f(x_0) + \frac{1}{f(x_0)}$ < 3.

ANALISI MATEMATICA 1 - Primo appello		23 gennaio 2015	
Cognome:	Nome:	Matricola:	
Corso di laurea:			

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 2. Siano $f(x) = \sqrt{3x^2 + 3}$ e g(t) = t + 3. La retta tangente al grafico della funzione $(g \circ f)(x)$ nel punto $x_0 = \sqrt{2}$ è: $a y = \frac{\sqrt{3}}{2}x \frac{5}{2}$; $b y = \frac{6}{5}x + \frac{12}{5}$; $c y = \frac{2}{3}x \frac{1}{3}$; $y = \sqrt{2}x + 4$.
- 3. Sia $p: \mathbf{R} \to \mathbf{R}$ una funzione continua tale che $p(0) = -1, p(1) = -\frac{3}{2}$. Per quale funzione f l'equazione f(x) = p(x) ha sicuramente soluzione in [0,1]? a $f(x) = 3 x^3$; b $f(x) = x^2 + \frac{1}{2}$; c $f(x) = x^2 \frac{1}{2}$; $f(x) = x^3 2$.
- 4. Vicino all'origine il grafico qualitativo della soluzione y(x) di $\begin{cases} y' = 3y^3 2y + \sin y 1 \\ y(0) = 0 \end{cases}$ è:



- 5. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua. Se $\int_0^4 f(x) dx = 1$ è sicuramente vero che esiste $x_0 \in [0, 4]$ tale che:

 [a] $2 < f(x_0) + \frac{1}{f(x_0)} < 3$; [b] $5 < f(x_0) + \frac{1}{f(x_0)} < 6$; [c] $3 < f(x_0) + \frac{1}{f(x_0)} < 4$; $4 < f(x_0) + \frac{1}{f(x_0)} < 5$.
 - 6. La funzione $k(x) = e^{x\sqrt{1-4x}}$ è crescente nel suo dominio di definizione per: $a \quad x \ge -\frac{1}{6}$; $x \le \frac{1}{6}$; $x \le \frac{1}{3}$; $x \ge -\frac{1}{3}$.
 - 7. I numeri complessi z soluzioni dell'equazione $2z\overline{z} + 2z^2 = 8 4i$ sono: $\boxed{a} -1 + 2i, 1 2i;$ $\boxed{b} -2 + i, 2 i;$ $\boxed{x} -\sqrt{2} + \frac{1}{\sqrt{2}}i, \sqrt{2} \frac{1}{\sqrt{2}}i;$ $\boxed{d} -\frac{1}{\sqrt{2}} + \sqrt{2}i, \frac{1}{\sqrt{2}} \sqrt{2}i.$
 - 8. Sia $\frac{a_0}{2} + \sum_{k=1}^{\infty} [a_k \cos(kx) + b_k \sin(kx)]$ la serie di Fourier della funzione $f(x) = \frac{x|x|}{3}$ nell'intervallo $(-\pi, \pi)$. Allora $b_4 = \begin{bmatrix} a \end{bmatrix} \pi$; $\begin{bmatrix} b \end{bmatrix} \frac{3}{2}\pi$; $\begin{bmatrix} d \end{bmatrix} \frac{\pi}{6}$; $\begin{bmatrix} d \end{bmatrix} \frac{\pi}{4}$.

ANALISI MATEMATICA 1 - Primo appello		23 gennaio 2015	
Cognome:	Nome:	Matricola:	
Corso di laurea:		Test Es1 Es2 Es3	

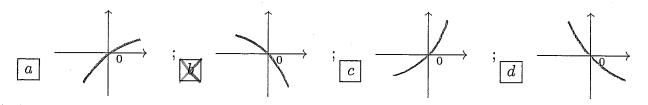
- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. I numeri complessi z soluzioni dell'equazione $2\bar{z}z 2z^2 = 8 + 4i$ sono: $\boxed{a} -2 + i, \ 2 i;$ $\boxed{b} -\sqrt{2} + \frac{1}{\sqrt{2}}i, \ \sqrt{2} \frac{1}{\sqrt{2}}i;$ $\boxed{a} \frac{1}{\sqrt{2}}i, \ \frac{1}{\sqrt{2$
- 2. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua. Se $\int_0^4 f(x) dx = 1$ è sicuramente vero che esiste $x_0 \in [0, 4]$ tale che:

 a $5 < f(x_0) + \frac{1}{f(x_0)} < 6$;

 b $3 < f(x_0) + \frac{1}{f(x_0)} < 4$;

 c $4 < f(x_0) + \frac{1}{f(x_0)} < 5$;

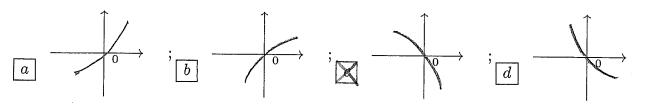
 d $2 < f(x_0) + \frac{1}{f(x_0)} < 3$.
- 3. Se la funzione f è derivabile in x = 0, allora $\lim_{x \to 0} \frac{f(x) f'(0)x f(0)}{x} = a + \infty$; b = f'(0); c = 0; c = 0, allora c = 0, allora c = 0; c = 0;
- 4. La funzione $k(x) = e^{x\sqrt{1-2x}}$ è crescente nel suo dominio di definizione per: a $x \le \frac{1}{6}$; $x \le \frac{1}{3}$; $x \ge -\frac{1}{3}$; $x \ge -\frac{1}{6}$.
- 5. Vicino all'origine il grafico qualitativo della soluzione y(x) di $\begin{cases} y'=3y^3+2y-\log(1+y)-1\\ y(0)=0 \end{cases}$ è:



- 6. Sia $\frac{a_0}{2} + \sum_{k=1}^{\infty} [a_k \cos(kx) + b_k \sin(kx)]$ la serie di Fourier della funzione $f(x) = \frac{x|x|}{2}$ nell'intervallo $(-\pi, \pi)$. Allora $b_4 = \begin{bmatrix} a \\ -\frac{3}{2}\pi; \end{bmatrix} \begin{bmatrix} b \\ -\frac{\pi}{6}; \end{bmatrix} \begin{bmatrix} -\frac{\pi}{4}; \end{bmatrix} \begin{bmatrix} d \\ -\pi. \end{bmatrix}$
- 7. Siano $f(x) = \sqrt{3x^2 + 3}$ e g(t) = t + 3. La retta tangente al grafico della funzione $(g \circ f)(x)$ nel punto $x_0 = \sqrt{2}$ è: a $y = \frac{6}{5}x + \frac{12}{5}$; b $y = \frac{2}{3}x \frac{1}{3}$; $y = \sqrt{2}x + 4$;
- 8. Sia $p: \mathbf{R} \to \mathbf{R}$ una funzione continua tale che $p(0) = -1, p(1) = -\frac{3}{2}$. Per quale funzione f l'equazione f(x) = p(x) ha sicuramente soluzione in [0,1]? a $f(x) = x^2 + \frac{1}{2}$; b $f(x) = x^2 \frac{1}{2}$; $f(x) = x^3 2$; $f(x) = x^3 2$; $f(x) = x^3 2$.

ANALISI MATEMATICA 1 - Primo appello		23 gennaio 2015
Cognome:	Nome:	Matricola:
Corso di laurea:		Test Es1 Es2 Es3

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Sia $p: \mathbf{R} \to \mathbf{R}$ una funzione continua tale che $p(0) = 1, p(1) = \frac{3}{4}$. Per quale funzione f l'equazione f(x) = p(x) ha sicuramente soluzione in [0,1]? \boxed{a} $f(x) = x^3 2$; \boxed{b} $f(x) = 3 x^3$; \boxed{x} $f(x) = x^2 + \frac{1}{2}$; \boxed{d} $f(x) = x^2 \frac{1}{2}$.
- 2. I numeri complessi z soluzioni dell'equazione $\bar{z}z-z^2=2+4i$ sono: $\boxed{a} -\frac{1}{\sqrt{2}}+\sqrt{2}i, \frac{1}{\sqrt{2}}-\sqrt{2}i;$ $\boxed{b} -1+2i, \ 1-2i; \ \boxed{a} -2+i, \ 2-i; \ \boxed{d} -\sqrt{2}+\frac{1}{\sqrt{2}}i, \ \sqrt{2}-\frac{1}{\sqrt{2}}i.$
- 3. Sia $\frac{a_0}{2} + \sum_{k=1}^{\infty} [a_k \cos(kx) + b_k \sin(kx)]$ la serie di Fourier della funzione f(x) = 3x|x| nell'intervallo $(-\pi, \pi)$. Allora $b_4 = \begin{bmatrix} a \end{bmatrix} \frac{\pi}{4}$; $\begin{bmatrix} b \end{bmatrix} \pi$; $\begin{bmatrix} -\frac{3}{2}\pi \end{bmatrix}$; $\begin{bmatrix} d \end{bmatrix} \frac{\pi}{6}$.
- 4. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua. Se $\int_0^5 f(x) dx = 1$ è sicuramente vero che esiste $x_0 \in [0, 5]$ tale che: a<
- 5. Siano $f(x) = \sqrt{2x^2 + 7}$ e g(t) = t + 1. La retta tangente al grafico della funzione $(g \circ f)(x)$ nel punto $x_0 = 3$ è: $a y = \sqrt{2}x + 4$; $b y = \frac{\sqrt{3}}{2}x \frac{5}{2}$; $y = \frac{6}{5}x + \frac{12}{5}$; $d y = \frac{2}{3}x \frac{1}{3}$.
- 6. Vicino all'origine il grafico qualitativo della soluzione y(x) di $\begin{cases} y' = 3y^3 + 2y \sin y 1 \\ y(0) = 0 \end{cases}$ è:

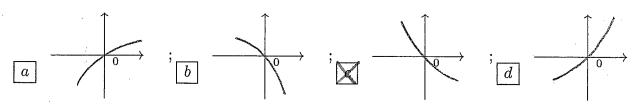


- 7. Se la retta tangente al grafico della funzione f in (0, f(0)) ha equazione y = f'(0)x, allora $\lim_{x\to 0} \frac{f(x)}{x} = \boxed{a} \ 0; \ \boxed{b} \ f(0); \ \boxed{c} \ +\infty; \ \boxed{x} \ f'(0).$
- 8. La funzione $k(x) = e^{x\sqrt{1-4x}}$ è crescente nel suo dominio di definizione per: a $x \ge -\frac{1}{3}$; b $x \ge -\frac{1}{6}$; $x \le \frac{1}{6}$; d $x \le \frac{1}{3}$.

ANALISI MATEMATICA 1 - Primo appello		23 gennaio 2015	
Cognome:	Nome:	Matricola:	
Corso di laurea:		Test Es1 Es2 Es3	

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua. Se $\int_0^2 f(x) dx = 1$ è sicuramente vero che esiste $x_0 \in [0, 2]$ tale che:

 a $4 < f(x_0) + \frac{1}{f(x_0)} < 5$; $2 < f(x_0) + \frac{1}{f(x_0)} < 3$; $5 < f(x_0) + \frac{1}{f(x_0)} < 6$; $3 < f(x_0) + \frac{1}{f(x_0)} < 4$.
- 2. La funzione $k(x) = e^{x\sqrt{2x+1}}$ è crescente nel suo dominio di definizione per: $x \ge -\frac{1}{3}$; $b \ x \ge -\frac{1}{6}$; $c \ x \le \frac{1}{6}$; $d \ x \le \frac{1}{3}$.
- 3. Siano $f(x) = \sqrt{x^2 + 5}$ e g(t) = t 2. La retta tangente al grafico della funzione $(g \circ f)(x)$ nel punto $x_0 = 2$ è: a $y = \sqrt{2}x + 4$; b $y = \frac{\sqrt{3}}{2}x \frac{5}{2}$; c $y = \frac{6}{5}x + \frac{12}{5}$; $y = \frac{2}{3}x \frac{1}{3}$.
- 4. Sia $p: \mathbf{R} \to \mathbf{R}$ una funzione continua tale che $p(0) = 0, p(1) = \frac{1}{4}$. Per quale funzione f l'equazione f(x) = p(x) ha sicuramente soluzione in [0,1]? a $f(x) = x^3 2$; b $f(x) = 3 x^3$; c $f(x) = x^2 + \frac{1}{2}$; $f(x) = x^2 \frac{1}{2}$.
- 5. Sia $\frac{a_0}{2} + \sum_{k=1}^{\infty} [a_k \cos(kx) + b_k \sin(kx)]$ la serie di Fourier della funzione $f(x) = \frac{x|x|}{2}$ nell'intervallo $(-\pi, \pi)$. Allora $b_4 = \begin{bmatrix} -\frac{\pi}{4} \\ \end{bmatrix}$ $\begin{bmatrix} -\frac{\pi}{4} \\ \end{bmatrix}$ $\begin{bmatrix} -\frac{\pi}{4} \\ \end{bmatrix}$ $\begin{bmatrix} -\frac{\pi}{6} \\ \end{bmatrix}$.
- 6. Se la funzione f è derivabile in x = 0, allora $\lim_{x \to 0} \frac{f(x) f'(0)x f(0)}{x} = \begin{bmatrix} b \end{bmatrix} f(0)$.
- 7. Vicino all'origine il grafico qualitativo della soluzione y(x) di $\begin{cases} y' = 3y^3 2y + \log(1+y) 1 \\ y(0) = 0 \end{cases}$ è:



8. I numeri complessi z soluzioni dell'equazione $z\bar{z}+z^2=2-4i$ sono: \boxed{a} $-\frac{1}{\sqrt{2}}+\sqrt{2}i, \frac{1}{\sqrt{2}}-\sqrt{2}i;$ \boxed{b} -1+2i, 1-2i; \boxed{c} -2+i, 2-i; \boxed{d} $-\sqrt{2}+\frac{1}{\sqrt{2}}i, \sqrt{2}-\frac{1}{\sqrt{2}}i.$

ANALISI MATEMATICA 1 - Primo appello		23 gennaio 2015	
Cognome:	Nome:	Matricola:	
Corso di laurea:		Test Es1 Es2 Es3	

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Sia $\frac{a_0}{2} + \sum_{k=1}^{\infty} [a_k \cos(kx) + b_k \sin(kx)]$ la serie di Fourier della funzione f(x) = 3x|x| nell'intervallo $(-\pi, \pi)$. Allora $b_4 = \begin{bmatrix} a \end{bmatrix} \frac{\pi}{6}$; $\begin{bmatrix} b \end{bmatrix} \frac{\pi}{4}$; $\begin{bmatrix} c \end{bmatrix} \pi$; $\begin{bmatrix} x \end{bmatrix} \frac{3}{2}\pi$.
- 2. Se la retta tangente al grafico della funzione f in (0, f(0)) ha equazione y = f'(0)x, allora $\lim_{x \to 0} \frac{f(x)}{x} = \text{ } f'(0); \text{ } b \text{ } 0; \text{ } c \text{ } f(0); \text{ } d \text{ } +\infty.$
- 3. La funzione $k(x) = e^{x\sqrt{4x+1}}$ è crescente nel suo dominio di definizione per: a $x \le \frac{1}{3}$; b $x \ge -\frac{1}{3}$; $x \ge -\frac{1}{6}$; d $x \le \frac{1}{6}$.
- 4. Siano $f(x) = \sqrt{2x^2 + 7}$ e g(t) = t + 1. La retta tangente al grafico della funzione $(g \circ f)(x)$ nel punto $x_0 = 3$ è: a $y = \frac{2}{3}x \frac{1}{3}$; b $y = \sqrt{2}x + 4$; c $y = \frac{\sqrt{3}}{2}x \frac{5}{2}$; $y = \frac{6}{5}x + \frac{12}{5}$.
- 5. I numeri complessi z soluzioni dell'equazione $\bar{z}z-z^2=2+4i$ sono: $a -\sqrt{2}+\frac{1}{\sqrt{2}}i, \sqrt{2}-\frac{1}{\sqrt{2}}i;$ $b -\frac{1}{\sqrt{2}}+\sqrt{2}i, \frac{1}{\sqrt{2}}-\sqrt{2}i;$ c -1+2i, 1-2i; d -2+i, 2-i.
- 6. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua. Se $\int_0^5 f(x) dx = 1$ è sicuramente vero che esiste $x_0 \in [0, 5]$ tale che:

 [a] $3 < f(x_0) + \frac{1}{f(x_0)} < 4$; [b] $4 < f(x_0) + \frac{1}{f(x_0)} < 5$; [c] $2 < f(x_0) + \frac{1}{f(x_0)} < 3$; $5 < f(x_0) + \frac{1}{f(x_0)} < 6$.
 - 7. Sia $p: \mathbf{R} \to \mathbf{R}$ una funzione continua tale che $p(0) = 1, p(1) = \frac{3}{4}$. Per quale funzione f l'equazione f(x) = p(x) ha sicuramente soluzione in [0,1]? a $f(x) = x^2 \frac{1}{2}$; b $f(x) = x^3 2$; c $f(x) = 3 x^3$; $f(x) = x^2 + \frac{1}{2}$.
 - 8. Vicino all'origine il grafico qualitativo della soluzione y(x) di $\begin{cases} y' = 3y^3 + 2y \sin y 1 \\ y(0) = 0 \end{cases}$ è:

