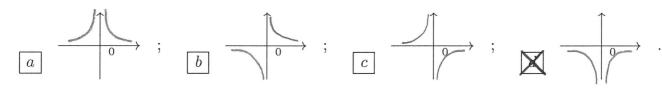
- 1. Sia $f:[a,b]\to \mathbf{R}$ una funzione derivabile tale che f(a)=1 e $f(b)=\frac{5}{2}$. Qualunque sia la funzione f con tali proprietà, in quale intervallo [a,b] esiste almeno un punto c tale che $f'(c)=\frac{1}{2}$? a [a,b]=[1,5]; b [a,b]=[1,6]; a [a,b]=[1,4]; d [a,b]=[1,3].
- 2. Il grafico qualitativo della della funzione $q(x) = \frac{1-e^x}{x^4+x^3}$ vicino a (0,0) è:



- 3. L'insieme nel quale la funzione $f(x) = e^x(x^2 3)$ è crescente è: $a \{x \le -4\} \cup \{x \ge 2\};$ $b \{x \le -6\} \cup \{x \ge 4\}; x \le -3\} \cup \{x \ge 1\}; d \{x \le -5\} \cup \{x \ge 3\}.$
- 4. Se $f: \mathbf{R} \to \mathbf{R}$ è una funzione derivabile in $x_0 \in \mathbf{R}$ allora $f'(x_0) = a \lim_{h \to 0} \frac{f(x_0) f(x_0 + h)}{h}$; $b \lim_{h \to 0} \frac{f(x_0 h) + f(x_0)}{h}$; $b \lim_{h \to 0} \frac{f(x_0 h) + f(x_0)}{h}$; $b \lim_{h \to 0} \frac{f(x_0) f(x_0 + h)}{h}$.
- 5. L'equazione della retta tangente al grafico della funzione $g(x) = \frac{\cos x \sin x}{x^2 + 1}$ nel punto $(\pi, g(\pi))$ è $(\pi^2 + 1)^2 y = a (\pi + 1)^2 x + \pi^3 + 3\pi^2 + \pi + 1;$ $b (\pi 1)^2 x \pi^3 + 3\pi^2 \pi + 1;$ $\pi + 1$ π
- 6. Per quale funzione f(x) l'equazione $f(x) + 2^x + 2 = 0$ ha una soluzione per $x \in [0, 1]$? $a \ f(x) = -\frac{5}{2} + \frac{5}{2}x; \quad b \ f(x) = \frac{5}{2} + \frac{5}{2}x; \quad f(x) = -\frac{9}{2} + \log_2(1+x); \quad d \ f(x) = \frac{1}{2} + 2\log_2(1+x).$
- 7. Sia $f(t) = t^3 + t$; il valore $(f^{-1})'(2)$ è: \boxed{a} $\frac{1}{2}$; \boxed{b} $\frac{1}{3}$; \boxed{d} $\frac{1}{4}$; \boxed{d} $\frac{1}{6}$.
- 8. Per quali valori dei parametri $\alpha \in \mathbf{R}$, $\beta \in \mathbf{R}$ la funzione $f(x) = \begin{cases} \frac{e^{\alpha x} \alpha}{x^2 + 1} & \text{se } x > 0 \\ \frac{2\sin(\beta x)}{(x 1)^2} & \text{se } x \leq 0 \end{cases}$ è derivabile? $\boxed{a} \quad \alpha = 1, \ \beta = \frac{1}{3}; \quad \boxed{b} \quad \alpha = 2, \ \beta = \frac{4}{3}; \quad \boxed{c} \quad \alpha = 2, \ \beta = 2; \quad \boxed{\mathbf{X}} \quad \alpha = 1, \ \beta = \frac{1}{2}.$

- 1. Per quali valori dei parametri $\alpha \in \mathbf{R}$, $\beta \in \mathbf{R}$ la funzione $f(x) = \begin{cases} \frac{2e^{\alpha x} \alpha}{x^2 + 1} & \text{se } x > 0 \\ \frac{2\sin(\beta x)}{(x 1)^2} & \text{se } x \leq 0 \end{cases}$ è derivabile? $\boxed{ \underset{$\norm{N}$} } \alpha = 2, \ \beta = 2; \quad \boxed{b} \ \alpha = 1, \ \beta = \frac{1}{2}; \quad \boxed{c} \ \alpha = 1, \ \beta = \frac{1}{3}; \quad \boxed{d} \ \alpha = 2, \ \beta = \frac{4}{3}.$
- 2. Sia $f(t) = t^5 + t$; il valore $(f^{-1})'(2)$ è: $a = \frac{1}{4}$; $a = \frac{1}{6}$; $a = \frac{1}{2}$; $a = \frac{1}{6}$; $a = \frac{1}{2}$; $a = \frac{1}{2}$
- 3. Se $f: \mathbf{R} \to \mathbf{R}$ è una funzione derivabile in $x_0 \in \mathbf{R}$ allora $f'(x_0) = a$ $\lim_{h \to 0} \frac{f(x_0 h) + f(x_0)}{h}$; $\lim_{h \to 0} \frac{f(x_0) f(x_0 h)}{h}$; $\lim_{x \to x_0} \frac{f(x_0) f(x + x_0)}{x_0 x}$; $\lim_{h \to 0} \frac{f(x_0) f(x_0 + h)}{h}$.
- 4. Per w > 0 sia $g(w) = \frac{1}{w} \log(1+w)$ e sia $f: \mathbf{R} \to \mathbf{R}$ una funzione derivabile tale che per ogni $x \in \mathbf{R}$ si abbia f(x) > 0. Allora la derivata della funzione composta $g \circ f$ è data da $(g \circ f)' = \sum_{j=0}^{\infty} \frac{f'}{(1+f)f^2} [f-(1+f)\log(1+f)];$ b $\frac{f'}{1+f} [f+(1+f)\log(1+f)];$ c $\frac{f'}{1+f} [f-(1+f)\log(1+f)];$ d $\frac{f'}{(1+f)f^2} [f+(1+f)\log(1+f)].$
- 5. Per quale funzione f(x) l'equazione $f(x) 2^x = 0$ ha una soluzione per $x \in [0, 1]$? a $f(x) = -\frac{9}{2} + \log_2(1+x)$; x $f(x) = \frac{1}{2} + 2\log_2(1+x)$; x $f(x) = -\frac{5}{2} + \frac{5}{2}x$; x $f(x) = \frac{5}{2} + \frac{5}{2}x$.
- 6. Il grafico qualitativo della della funzione $q(x) = \frac{\sin x}{x^4 + x^3}$ vicino a (0,0) è:



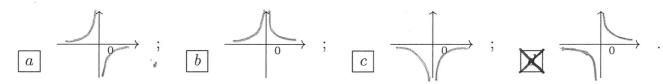
- 7. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua tale che $\lim_{x \to -\infty} f(x) = 3$, $\lim_{x \to +\infty} f(x) = 1$, f(-1) = f(0) = f(1) = 2. Allora, qualsiasi sia la funzione f che soddisfi a tali proprietà, è vero che: \boxed{a} f ha minimo assoluto ma non è detto che abbia massimo assoluto su \mathbf{R} ; \boxed{b} f ha massimo assoluto ma non è detto che abbia minimo assoluto su \mathbf{R} ; \boxed{d} f ha sia massimo assoluto che minimo assoluto su \mathbf{R} .
- 8. L'insieme nel quale la funzione $f(x) = e^x(x^2 15)$ è crescente è: $a \{x \le -3\} \cup \{x \ge 1\};$ $x \le -5\} \cup \{x \ge 3\};$ $x \le -4\} \cup \{x \ge 2\};$ $x \le -6\} \cup \{x \ge 4\}.$
- 9. L'equazione della retta tangente al grafico della funzione $g(x) = \frac{\sin x \cos x}{x^2 + 1}$ nel punto $(\pi, g(\pi))$ è $(\pi^2 + 1)^2 y = a (\pi + 1)^2 x \pi^3 3\pi^2 \pi 1;$ $b (\pi 1)^2 x + \pi^3 3\pi^2 + \pi 1;$ $d (\pi + 1)^2 x + \pi^3 + 3\pi^2 + \pi + 1;$ $d (\pi 1)^2 x \pi^3 + 3\pi^2 \pi + 1.$
- 10. Sia $f:[a,b]\to \mathbf{R}$ una funzione derivabile tale che f(a)=4 e f(b)=6. Qualunque sia la funzione f con tali proprietà, in quale intervallo [a,b] esiste almeno un punto c tale che $f'(c)=\frac{1}{2}$? a [a,b]=[1,4]; b [a,b]=[1,3]; a [a,b]=[1,5]; a [a,b]=[1,6].

- 2. Per quale funzione f(x) l'equazione $f(x) 2^x = 0$ ha una soluzione per $x \in [0, 1]$? a $f(x) = -\frac{5}{2} + \frac{5}{2}x$; b $f(x) = \frac{5}{2} + \frac{5}{2}x$; c $f(x) = -\frac{9}{2} + \log_2(1+x)$; $f(x) = \frac{1}{2} + 2\log_2(1+x)$.
- 3. Per quali valori dei parametri $\alpha \in \mathbf{R}$, $\beta \in \mathbf{R}$ la funzione $f(x) = \begin{cases} \frac{2e^{\alpha x} \alpha}{x^2 + 1} & \text{se } x > 0 \\ \frac{2\sin(\beta x)}{(x 1)^2} & \text{se } x \leq 0 \end{cases}$ è derivabile? $\boxed{a} \quad \alpha = 1, \ \beta = \frac{1}{3}; \quad \boxed{b} \quad \alpha = 2, \ \beta = \frac{4}{3}; \quad \boxed{\alpha} \quad \alpha = 2, \ \beta = 2; \quad \boxed{d} \quad \alpha = 1, \ \beta = \frac{1}{2}.$
- 4. L'insieme nel quale la funzione $f(x) = e^x(x^2 15)$ è crescente è: $a \{x \le -4\} \cup \{x \ge 2\};$ $b \{x \le -6\} \cup \{x \ge 4\}; c \{x \le -3\} \cup \{x \ge 1\};$ $a \{x \le -5\} \cup \{x \ge 3\}.$
- 5. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua tale che $\lim_{x \to -\infty} f(x) = 3$, $\lim_{x \to +\infty} f(x) = 2$, f(-1) = f(0) = f(1) = 1. Allora, qualsiasi sia la funzione f che soddisfi a tali proprietà, è vero che: a f non è detto che abbia né massimo assoluto né minimo assoluto su \mathbf{R} ; f ha minimo assoluto ma non è detto che abbia massimo assoluto su \mathbf{R} ; f ha minimo assoluto ma non è detto che abbia minimo assoluto su \mathbf{R} .
- 6. L'equazione della retta tangente al grafico della funzione $g(x) = \frac{\sin x \cos x}{x^2 + 1}$ nel punto $(\pi, g(\pi))$ è $(\pi^2 + 1)^2 y = \sum_{n=0}^{\infty} -(\pi + 1)^2 x + \pi^3 + 3\pi^2 + \pi + 1;$ b $(\pi 1)^2 x \pi^3 + 3\pi^2 \pi + 1;$ c $(\pi + 1)^2 x \pi^3 3\pi^2 \pi 1;$ d $(\pi 1)^2 x + \pi^3 3\pi^2 + \pi 1.$
- 7. Il grafico qualitativo della della funzione $q(x) = \frac{\sin x}{x^5 + x^4}$ vicino a (0,0) è:

- 8. Sia $f:[a,b] \to \mathbf{R}$ una funzione derivabile tale che f(a)=1 e $f(b)=\frac{7}{2}$. Qualunque sia la funzione f con tali proprietà, in quale intervallo [a,b] esiste almeno un punto c tale che $f'(c)=\frac{1}{2}$? a [a,b]=[1,5]; c [a,b]=[1,4]; d [a,b]=[1,3].
- 9. Sia $f(t) = t^3 + t$; il valore $(f^{-1})'(2)$ è: $a = \frac{1}{2}$; $b = \frac{1}{3}$; $a = \frac{1}{4}$; $a = \frac{1}{4}$
- 10. Se $f : \mathbf{R} \to \mathbf{R}$ è una funzione derivabile in $x_0 \in \mathbf{R}$ allora $f'(x_0) = a$ $\lim_{h \to 0} \frac{f(x_0) + f(x_0 h)}{h}$; $\lim_{h \to 0} \frac{f(x_0 h) f(x_0)}{h}$; $\lim_{x \to x_0} \frac{f(x_0) f(x + x_0)}{x_0 x}$; $\lim_{h \to 0} \frac{f(x_0) f(x_0 h)}{h}$.

- 1. L'insieme nel quale la funzione $f(x) = e^x(x^2 3)$ è crescente è: $a \{x \le -4\} \cup \{x \ge 2\};$ $b \{x \le -6\} \cup \{x \ge 4\}; x \{x \le -3\} \cup \{x \ge 1\}; d \{x \le -5\} \cup \{x \ge 3\}.$

- 4. Sia $f:[a,b]\to \mathbf{R}$ una funzione derivabile tale che f(a)=1 e $f(b)=\frac{5}{2}$. Qualunque sia la funzione f con tali proprietà, in quale intervallo [a,b] esiste almeno un punto c tale che $f'(c)=\frac{1}{2}$? a [a,b]=[1,5]; b [a,b]=[1,6]; a [a,b]=[1,4]; a [a,b]=[1,3].
- 5. Il grafico qualitativo della della funzione $q(x) = \frac{\sin x}{x^5 + x^4}$ vicino a (0,0) è:



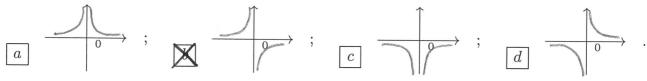
- 6. Sia $f(t) = t^3 + 2t$; il valore $(f^{-1})'(0)$ è: $\left[\sum \frac{1}{2}; \ b \right] \frac{1}{3}; \ c \frac{1}{4}; \ d \frac{1}{6}$.
- 7. L'equazione della retta tangente al grafico della funzione $g(x) = \frac{\cos x \sin x}{x^2 + 1}$ nel punto $(\pi, g(\pi))$ è $(\pi^2 + 1)^2 y = a (\pi + 1)^2 x + \pi^3 + 3\pi^2 + \pi + 1;$ $b (\pi 1)^2 x \pi^3 + 3\pi^2 \pi + 1;$ $(\pi + 1)^2 x \pi^3 3\pi^2 \pi 1;$ $d (\pi 1)^2 x + \pi^3 3\pi^2 + \pi 1.$
- 8. Se $f: \mathbf{R} \to \mathbf{R}$ è una funzione derivabile in $x_0 \in \mathbf{R}$ allora $f'(x_0) = \begin{bmatrix} a \end{bmatrix} \lim_{x \to x_0} \frac{f(x x_0) f(x_0)}{x x_0}$; $\begin{bmatrix} b \end{bmatrix} \lim_{h \to 0} \frac{f(x_0) + f(x_0 h)}{h}$; $\begin{bmatrix} c \end{bmatrix} \lim_{h \to 0} \frac{f(x_0 h) f(x_0)}{h}$; $\begin{bmatrix} b \end{bmatrix} \lim_{h \to 0} \frac{f(x_0) f(x_0 h)}{h}$.
- 9. Per quale funzione f(x) l'equazione $f(x) + 2^x + 1 = 0$ ha una soluzione per $x \in [0,1]$? $X = \frac{5}{2} + \frac{5}{2}x$; $X = \frac{5}{2} + \frac{5}{2}x$;
- 10. Per quali valori dei parametri $\alpha \in \mathbf{R}$, $\beta \in \mathbf{R}$ la funzione $f(x) = \begin{cases} \frac{e^{\alpha x} \alpha}{x^2 + 1} & \text{se } x > 0 \\ \frac{2\sin(\beta x)}{(x 1)^2} & \text{se } x \leq 0 \end{cases}$ è derivabile? \boxed{a} $\alpha = 1$, $\beta = \frac{1}{3}$; \boxed{b} $\alpha = 2$, $\beta = \frac{4}{3}$; \boxed{c} $\alpha = 2$, $\beta = 2$; $\boxed{\mathbf{X}}$ $\alpha = 1$, $\beta = \frac{1}{2}$.

2 novembre 2017

- 1. Se $f: \mathbf{R} \to \mathbf{R}$ è una funzione derivabile in $x_0 \in \mathbf{R}$ allora $f'(x_0) = a$ $\lim_{x \to x_0} \frac{f(x x_0) f(x_0)}{x x_0}$; $\lim_{h \to 0} \frac{f(x_0) f(x_0 h)}{h}$; $\lim_{h \to 0} \frac{f(x_0) f(x_0 h)}{h}$; $\lim_{h \to 0} \frac{f(x_0) f(x_0)}{h}$.
- 2. L'equazione della retta tangente al grafico della funzione $g(x) = \frac{\sin x + \cos x}{x^2 + 1}$ nel punto $(\pi, g(\pi))$ è $(\pi^2 + 1)^2 y = a (\pi + 1)^2 x \pi^3 3\pi^2 \pi 1;$ $(\pi 1)^2 x + \pi^3 3\pi^2 + \pi 1;$ $(\pi 1)^2 x + \pi^3 + 3\pi^2 + \pi + 1;$ $(\pi 1)^2 x \pi^3 + 3\pi^2 \pi + 1.$
- 3. Sia $f:[a,b]\to \mathbf{R}$ una funzione derivabile tale che f(a)=1 e $f(b)=\frac{7}{2}$. Qualunque sia la funzione f con tali proprietà, in quale intervallo [a,b] esiste almeno un punto c tale che $f'(c)=\frac{1}{2}$? a [a,b]=[1,4]; b [a,b]=[1,3]; c [a,b]=[1,5]; a [a,b]=[1,6].
- 4. Per quali valori dei parametri $\alpha \in \mathbf{R}$, $\beta \in \mathbf{R}$ la funzione $f(x) = \begin{cases} \frac{2e^{\alpha x} \alpha}{x^2 + 1} & \text{se } x > 0 \\ \frac{2\sin(\beta x)}{(x 1)^2} & \text{se } x \leq 0 \end{cases}$ è derivabile? \mathbf{X} $\alpha = 2$, $\beta = 2$; \mathbf{D} $\alpha = 1$, $\beta = \frac{1}{2}$; \mathbf{C} $\alpha = 1$, $\beta = \frac{1}{3}$; \mathbf{D} $\alpha = 2$, $\beta = \frac{4}{3}$.
- 5. Sia $f(t) = t^5 + t$; il valore $(f^{-1})'(2)$ è: $a = \frac{1}{4}$; $a = \frac{1}{6}$; $a = \frac{1}{2}$; $a = \frac{1}{2}$
- 6. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua tale che $\lim_{x \to -\infty} f(x) = 3$, $\lim_{x \to +\infty} f(x) = 1$, f(-1) = f(0) = f(1) = 2. Allora, qualsiasi sia la funzione f che soddisfi a tali proprietà, è vero che: a f ha minimo assoluto ma non è detto che abbia massimo assoluto su \mathbf{R} ; b f ha massimo assoluto ma non è detto che abbia minimo assoluto su \mathbf{R} ; f non è detto che abbia né massimo assoluto né minimo assoluto su \mathbf{R} ; f ha sia massimo assoluto che minimo assoluto su f.
- 7. Per quale funzione f(x) l'equazione $f(x) 2^x 2 = 0$ ha una soluzione per $x \in [0, 1]$? $a \quad f(x) = -\frac{9}{2} + \log_2(1+x); \quad b \quad f(x) = \frac{1}{2} + 2\log_2(1+x); \quad c \quad f(x) = -\frac{5}{2} + \frac{5}{2}x; \quad f(x) = \frac{5}{2} + \frac{5}{2}x.$
- 8. Per w > 0 sia $g(w) = w \log(1+w)$ e sia $f: \mathbf{R} \to \mathbf{R}$ una funzione derivabile tale che per ogni $x \in \mathbf{R}$ si abbia f(x) > 0. Allora la derivata della funzione composta $g \circ f$ è data da $(g \circ f)' = a$ $\frac{f'}{(1+f)f^2}[f-(1+f)\log(1+f)];$ \mathbf{X} $\frac{f'}{1+f}[f+(1+f)\log(1+f)];$ \mathbf{C} $\frac{f'}{1+f}[f-(1+f)\log(1+f)];$ \mathbf{C} $\frac{f'}{1+f}[f-(1+f)\log(1+f)];$ \mathbf{C} \mathbf{C}
- 9. Il grafico qualitativo della della funzione $q(x) = \frac{1-e^x}{x^5+x^4}$ vicino a (0,0) è:

10. L'insieme nel quale la funzione $f(x) = e^x(x^2 - 8)$ è crescente è: $a \{x \le -3\} \cup \{x \ge 1\}$; $b \{x \le -5\} \cup \{x \ge 3\}$; $a \{x \le -4\} \cup \{x \ge 2\}$; $a \{x \le -6\} \cup \{x \ge 4\}$.

- 1. Per quale funzione f(x) l'equazione $f(x) + 2^x + 1 = 0$ ha una soluzione per $x \in [0,1]$? $a \ f(x) = \frac{5}{2} + \frac{5}{2}x$; $b \ f(x) = -\frac{9}{2} + \log_2(1+x)$; $c \ f(x) = \frac{1}{2} + 2\log_2(1+x)$; $f(x) = -\frac{5}{2} + \frac{5}{2}x$.
- 2. L'insieme nel quale la funzione $f(x) = e^x(x^2 8)$ è crescente è: $a \{x \le -6\} \cup \{x \ge 4\};$ $b \{x \le -3\} \cup \{x \ge 1\}; c \{x \le -5\} \cup \{x \ge 3\}; x \{x \le -4\} \cup \{x \ge 2\}.$
- 3. Sia $f(t) = t^3 + 2t$; il valore $(f^{-1})'(0)$ è: $a \frac{1}{3}$; $b \frac{1}{4}$; $c \frac{1}{6}$; 2
- 4. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua tale che $\lim_{x \to -\infty} f(x) = -3$, $\lim_{x \to +\infty} f(x) = -2$, f(-1) = f(0) = f(1) = -1. Allora, qualsiasi sia la funzione f che soddisfi a tali proprietà, è vero che: a f ha sia massimo assoluto che minimo assoluto su \mathbf{R} ; b f ha minimo assoluto ma non è detto che abbia minimo assoluto su \mathbf{R} ; d f non è detto che abbia né massimo assoluto né minimo assoluto su \mathbf{R} .
- 5. Sia $f:[a,b]\to \mathbf{R}$ una funzione derivabile tale che f(a)=4 e f(b)=5. Qualunque sia la funzione f con tali proprietà, in quale intervallo [a,b] esiste almeno un punto c tale che $f'(c)=\frac{1}{2}$? a [a,b]=[1,6]; b [a,b]=[1,4]; a [a,b]=[1,3]; a [a,b]=[1,5].
- 6. Per quali valori dei parametri $\alpha \in \mathbf{R}$, $\beta \in \mathbf{R}$ la funzione $f(x) = \begin{cases} \frac{e^{\alpha x} \alpha}{x^2 + 1} & \text{se } x > 0 \\ \frac{3 \sin(\beta x)}{(x 1)^2} & \text{se } x \leq 0 \end{cases}$ è derivabile? $\boxed{a} \quad \alpha = 2, \ \beta = \frac{4}{3}; \quad \boxed{b} \quad \alpha = 2, \ \beta = 2; \quad \boxed{c} \quad \alpha = 1, \ \beta = \frac{1}{2}; \quad \boxed{\alpha} \quad \alpha = 1, \ \beta = \frac{1}{3}.$
- 7. Se $f: \mathbf{R} \to \mathbf{R}$ è una funzione derivabile in $x_0 \in \mathbf{R}$ allora $f'(x_0) = a \lim_{h \to 0} \frac{f(x_0 h) f(x_0)}{h}$; $b \lim_{x \to x_0} \frac{f(x x_0) f(x_0)}{x x_0}$; $b \lim_{h \to 0} \frac{f(x_0) f(x_0 h)}{h}$; $b \lim_{h \to 0} \frac{f(x_0) f(x_0 h)}{h}$.
- 8. Il grafico qualitativo della della funzione $q(x) = \frac{1-e^x}{x^5+x^4}$ vicino a (0,0) è:



- 9. Per w > 0 sia $g(w) = \frac{1}{w} \log(1+w)$ e sia $f : \mathbf{R} \to \mathbf{R}$ una funzione derivabile tale che per ogni $x \in \mathbf{R}$ si abbia f(x) > 0. Allora la derivata della funzione composta $g \circ f$ è data da $(g \circ f)' = a$ $\frac{f'}{(1+f)f^2}[f+(1+f)\log(1+f)];$ \mathbf{K} $\frac{f'}{(1+f)f^2}[f-(1+f)\log(1+f)];$ \mathbf{C} $\frac{f'}{1+f}[f+(1+f)\log(1+f)];$ \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C}
- 10. L'equazione della retta tangente al grafico della funzione $g(x) = \frac{\sin x + \cos x}{x^2 + 1}$ nel punto $(\pi, g(\pi))$ è $(\pi^2 + 1)^2 y = a$ $(\pi 1)^2 x \pi^3 + 3\pi^2 \pi + 1$; b $(\pi + 1)^2 x \pi^3 3\pi^2 \pi 1$; A = -1; A = -1;

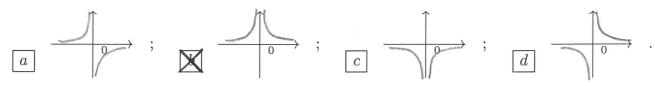
2 novembre 2017

1. Il grafico qualitativo della della funzione $q(x) = \frac{\sin x}{x^5 + x^4}$ vicino a (0,0) è:

- 2. Se $f: \mathbf{R} \to \mathbf{R}$ è una funzione derivabile in $x_0 \in \mathbf{R}$ allora $f'(x_0) = \sum_{h \to 0} \frac{f(x_0) f(x_0 h)}{h}$; $b \lim_{x \to x_0} \frac{f(x x_0) f(x_0)}{x x_0}$; $c \lim_{h \to 0} \frac{f(x_0) + f(x_0 h)}{h}$; $d \lim_{h \to 0} \frac{f(x_0 h) f(x_0)}{h}$.
- 3. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua tale che $\lim_{x \to -\infty} f(x) = 3$, $\lim_{x \to +\infty} f(x) = 3$, f(-1) = 1, f(1) = 4. Allora, qualsiasi sia la funzione f che soddisfi a tali proprietà, è vero che: $\begin{bmatrix} a \end{bmatrix} f$ ha massimo assoluto ma non è detto che abbia minimo assoluto su \mathbf{R} ; $\begin{bmatrix} b \end{bmatrix} f$ non è detto che abbia né massimo assoluto né minimo assoluto su \mathbf{R} ; $\begin{bmatrix} d \end{bmatrix} f$ ha minimo assoluto ma non è detto che abbia massimo assoluto su \mathbf{R} .
- 4. L'equazione della retta tangente al grafico della funzione $g(x) = \frac{-\cos x \sin x}{x^2 + 1}$ nel punto $(\pi, g(\pi))$ è $(\pi^2 + 1)^2 y = a (\pi 1)^2 x + \pi^3 3\pi^2 + \pi 1$; $b (\pi + 1)^2 x + \pi^3 + 3\pi^2 + \pi + 1$; $(\pi 1)^2 x \pi^3 + 3\pi^2 \pi + 1$; $d (\pi + 1)^2 x \pi^3 3\pi^2 \pi 1$.
- 5. Per quali valori dei parametri $\alpha \in \mathbf{R}$, $\beta \in \mathbf{R}$ la funzione $f(x) = \begin{cases} \frac{2e^{\alpha x} \alpha}{x^2 + 1} & \text{se } x > 0 \\ \frac{3\sin(\beta x)}{(x 1)^2} & \text{se } x \leq 0 \end{cases}$ è derivabile? $\boxed{a} \quad \alpha = 1, \ \beta = \frac{1}{2}; \quad \boxed{b} \quad \alpha = 1, \ \beta = \frac{1}{3}; \quad \boxed{d} \quad \alpha = 2, \ \beta = \frac{4}{3}; \quad \boxed{d} \quad \alpha = 2, \ \beta = 2.$
- 6. L'insieme nel quale la funzione $f(x) = e^x(x^2 24)$ è crescente è: $a \{x \le -5\} \cup \{x \ge 3\};$ $b \{x \le -4\} \cup \{x \ge 2\}; x \{x \le -6\} \cup \{x \ge 4\}; d \{x \le -3\} \cup \{x \ge 1\}.$
- 7. Per w > 0 sia $g(w) = w \log(1+w)$ e sia $f : \mathbf{R} \to \mathbf{R}$ una funzione derivabile tale che per ogni $x \in \mathbf{R}$ si abbia f(x) > 0. Allora la derivata della funzione composta $g \circ f$ è data da $(g \circ f)' = \sum_{f=0}^{\infty} \frac{f'}{1+f} [f+(1+f)\log(1+f)];$ b $\frac{f'}{1+f} [f-(1+f)\log(1+f)];$ c $\frac{f'}{(1+f)f^2} [f+(1+f)\log(1+f)];$ d $\frac{f'}{(1+f)f^2} [f-(1+f)\log(1+f)].$
- 8. Sia $f(t) = t^5 + 3t$; il valore $(f^{-1})'(0)$ è: $a = \frac{1}{6}$; $b = \frac{1}{2}$; $a = \frac{1}{3}$; $a = \frac{1}{4}$.
- 9. Sia $f:[a,b] \to \mathbf{R}$ una funzione derivabile tale che f(a)=1 e $f(b)=\frac{7}{2}$. Qualunque sia la funzione f con tali proprietà, in quale intervallo [a,b] esiste almeno un punto c tale che $f'(c)=\frac{1}{2}$? a [a,b]=[1,3]; b [a,b]=[1,5]; a [a,b]=[1,6]; a [a,b]=[1,4].
- 10. Per quale funzione f(x) l'equazione $f(x) 2^x 2 = 0$ ha una soluzione per $x \in [0,1]$? $a \ f(x) = \frac{1}{2} + 2\log_2(1+x); \quad b \ f(x) = -\frac{5}{2} + \frac{5}{2}x; \quad f(x) = \frac{5}{2} + \frac{5}{2}x; \quad d \ f(x) = -\frac{9}{2} + \log_2(1+x).$

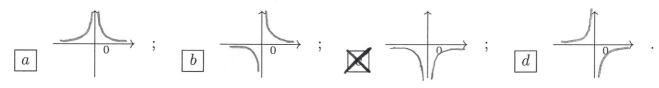
ANALISI MATEMATICA 1 2 no

- 1. L'equazione della retta tangente al grafico della funzione $g(x) = \frac{-\cos x \sin x}{x^2 + 1}$ nel punto $(\pi, g(\pi))$ è $(\pi^2 + 1)^2 y = (\pi 1)^2 x \pi^3 + 3\pi^2 \pi + 1;$ b $(\pi + 1)^2 x \pi^3 3\pi^2 \pi 1;$ c $-(\pi 1)^2 x + \pi^3 3\pi^2 + \pi 1;$ d $-(\pi + 1)^2 x + \pi^3 + 3\pi^2 + \pi + 1.$
- 2. Per quali valori dei parametri $\alpha \in \mathbf{R}$, $\beta \in \mathbf{R}$ la funzione $f(x) = \begin{cases} \frac{e^{\alpha x} \alpha}{x^2 + 1} & \text{se } x > 0 \\ \frac{3 \sin(\beta x)}{(x 1)^2} & \text{se } x \leq 0 \end{cases}$ è derivabile? $a = 2, \beta = \frac{4}{3}$; $b = 2, \beta = 2$; $c = 1, \beta = \frac{1}{2}$; $\alpha = 1, \beta = \frac{1}{3}$.
- 3. Il grafico qualitativo della della funzione $q(x) = \frac{\sin x}{x^4 + x^3}$ vicino a (0,0) è:



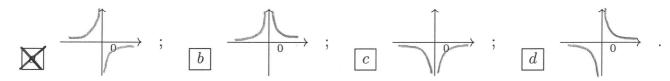
- 4. Sia $f(t) = t^5 + t$; il valore $(f^{-1})'(2)$ è: $a = \frac{1}{3}$; $b = \frac{1}{4}$; $a = \frac{1}{6}$; $a = \frac{1}{2}$.
- 5. Per w > 0 sia $g(w) = \frac{1}{w} \log(1+w)$ e sia $f: \mathbf{R} \to \mathbf{R}$ una funzione derivabile tale che per ogni $x \in \mathbf{R}$ si abbia f(x) > 0. Allora la derivata della funzione composta $g \circ f$ è data da $(g \circ f)' = a$ $\frac{f'}{(1+f)f^2}[f+(1+f)\log(1+f)];$ \mathbf{K} $\frac{f'}{(1+f)f^2}[f-(1+f)\log(1+f)];$ \mathbf{C} $\frac{f'}{1+f}[f+(1+f)\log(1+f)];$ \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C}
- 6. Sia $f:[a,b] \to \mathbf{R}$ una funzione derivabile tale che f(a)=1 e $f(b)=\frac{5}{2}$. Qualunque sia la funzione f con tali proprietà, in quale intervallo [a,b] esiste almeno un punto c tale che $f'(c)=\frac{1}{2}$? a [a,b]=[1,6]; c [a,b]=[1,3]; d [a,b]=[1,5].
- 7. L'insieme nel quale la funzione $f(x) = e^x(x^2 15)$ è crescente è: $a \{x \le -6\} \cup \{x \ge 4\};$ $b \{x \le -3\} \cup \{x \ge 1\}; x \{x \le -5\} \cup \{x \ge 3\}; d \{x \le -4\} \cup \{x \ge 2\}.$
- 8. Per quale funzione f(x) l'equazione $f(x) 2^x = 0$ ha una soluzione per $x \in [0, 1]$? a $f(x) = \frac{5}{2} + \frac{5}{2}x$; b $f(x) = -\frac{9}{2} + \log_2(1+x)$; $f(x) = \frac{1}{2} + 2\log_2(1+x)$; $f(x) = -\frac{5}{2} + \frac{5}{2}x$.
- 9. Se $f: \mathbf{R} \to \mathbf{R}$ è una funzione derivabile in $x_0 \in \mathbf{R}$ allora $f'(x_0) = a \lim_{h \to 0} \frac{f(x_0) f(x_0 + h)}{h}$; $\lim_{h \to 0} \frac{f(x_0 h) + f(x_0)}{h}$; $\lim_{h \to 0} \frac{f(x_0) f(x_0 h)}{h}$; $\lim_{k \to \infty} \frac{f(x_0) f(x_0 + h)}{k}$.
- 10. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua tale che $\lim_{x \to -\infty} f(x) = 3$, $\lim_{x \to +\infty} f(x) = 1$, f(-1) = f(0) = f(1) = 2. Allora, qualsiasi sia la funzione f che soddisfi a tali proprietà, è vero che: a f ha sia massimo assoluto che minimo assoluto su \mathbf{R} ; f ha minimo assoluto ma non è detto che abbia massimo assoluto su \mathbf{R} ; f non è detto che abbia né massimo assoluto né minimo assoluto su \mathbf{R} .

- 1. Sia $f(t) = t^5 + 3t$; il valore $(f^{-1})'(0)$ è: $\boxed{ } \frac{1}{3} ; \boxed{b} \frac{1}{4} ; \boxed{c} \frac{1}{6} ; \boxed{d} \frac{1}{2} .$
- 2. Per w > 0 sia $g(w) = \frac{1}{w} \log(1+w)$ e sia $f : \mathbf{R} \to \mathbf{R}$ una funzione derivabile tale che per ogni $x \in \mathbf{R}$ si abbia f(x) > 0. Allora la derivata della funzione composta $g \circ f$ è data da $(g \circ f)' = a$ $\frac{f'}{(1+f)f^2}[f + (1+f)\log(1+f)];$ \mathbf{X} $\frac{f'}{(1+f)f^2}[f (1+f)\log(1+f)];$ \mathbf{C} $\frac{f'}{1+f}[f + (1+f)\log(1+f)]$.
- 3. L'equazione della retta tangente al grafico della funzione $g(x) = \frac{-\cos x \sin x}{x^2 + 1}$ nel punto $(\pi, g(\pi))$ è $(\pi^2 + 1)^2 y = (\pi 1)^2 x \pi^3 + 3\pi^2 \pi + 1;$ b $(\pi + 1)^2 x \pi^3 3\pi^2 \pi 1;$ c $-(\pi 1)^2 x + \pi^3 3\pi^2 + \pi 1;$ d $-(\pi + 1)^2 x + \pi^3 + 3\pi^2 + \pi + 1.$
- 4. Per quale funzione f(x) l'equazione $f(x) + 2^x + 2 = 0$ ha una soluzione per $x \in [0, 1]$? $a \quad f(x) = \frac{5}{2} + \frac{5}{2}x;$ $f(x) = -\frac{9}{2} + \log_2(1+x);$ $c \quad f(x) = \frac{1}{2} + 2\log_2(1+x);$ $d \quad f(x) = -\frac{5}{2} + \frac{5}{2}x.$
- 5. L'insieme nel quale la funzione $f(x) = e^x(x^2 8)$ è crescente è: $a \{x \le -6\} \cup \{x \ge 4\};$ $b \{x \le -3\} \cup \{x \ge 1\}; c \{x \le -5\} \cup \{x \ge 3\}; x \{x \le -4\} \cup \{x \ge 2\}.$
- 6. Se $f: \mathbf{R} \to \mathbf{R}$ è una funzione derivabile in $x_0 \in \mathbf{R}$ allora $f'(x_0) = a \lim_{h \to 0} \frac{f(x_0) + f(x_0 h)}{h}$; $\lim_{h \to 0} \frac{f(x_0 h) f(x_0)}{h}$; $\lim_{h \to 0} \frac{f(x_0 h) f(x_0)}{h}$; $\lim_{k \to \infty} \frac{f(x_0 h) f(x_0)}{h}$.
- 7. Sia $f:[a,b]\to \mathbf{R}$ una funzione derivabile tale che f(a)=4 e f(b)=5. Qualunque sia la funzione f con tali proprietà, in quale intervallo [a,b] esiste almeno un punto c tale che $f'(c)=\frac{1}{2}$? a [a,b]=[1,6]; b [a,b]=[1,4]; a [a,b]=[1,3]; d [a,b]=[1,5].
- 8. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua tale che $\lim_{x \to -\infty} f(x) = -3$, $\lim_{x \to +\infty} f(x) = -2$, f(-1) = f(0) = f(1) = -1. Allora, qualsiasi sia la funzione f che soddisfi a tali proprietà, è vero che: a f ha sia massimo assoluto che minimo assoluto su \mathbf{R} ; b f ha minimo assoluto ma non è detto che abbia minimo assoluto su \mathbf{R} ; d f non è detto che abbia né massimo assoluto né minimo assoluto su \mathbf{R} .
- 9. Per quali valori dei parametri $\alpha \in \mathbf{R}$, $\beta \in \mathbf{R}$ la funzione $f(x) = \begin{cases} \frac{e^{\alpha x} \alpha}{x^2 + 1} & \text{se } x > 0 \\ \frac{3 \sin(\beta x)}{(x 1)^2} & \text{se } x \leq 0 \end{cases}$ è derivabile? $\boxed{a} \quad \alpha = 2, \ \beta = \frac{4}{3}; \quad \boxed{b} \quad \alpha = 2, \ \beta = 2; \quad \boxed{c} \quad \alpha = 1, \ \beta = \frac{1}{2}; \quad \boxed{\alpha} \quad \alpha = 1, \ \beta = \frac{1}{3}.$
- 10. Il grafico qualitativo della della funzione $q(x) = \frac{1-e^x}{x^4+x^3}$ vicino a (0,0) è:



ANALISI MATEMATICA 1 2 novembre 2017

- 2. Sia $f:[a,b] \to \mathbf{R}$ una funzione derivabile tale che f(a)=4 e f(b)=6. Qualunque sia la funzione f con tali proprietà, in quale intervallo [a,b] esiste almeno un punto c tale che $f'(c)=\frac{1}{2}$? a [a,b]=[1,3]; c [a,b]=[1,6]; d [a,b]=[1,4].
- 3. Per quale funzione f(x) l'equazione $f(x) + 2^x + 2 = 0$ ha una soluzione per $x \in [0,1]$? $a \ f(x) = \frac{1}{2} + 2\log_2(1+x); \quad b \ f(x) = -\frac{5}{2} + \frac{5}{2}x; \quad c \ f(x) = \frac{5}{2} + \frac{5}{2}x; \quad f(x) = -\frac{9}{2} + \log_2(1+x).$
- 4. Il grafico qualitativo della della funzione $q(x) = \frac{1-e^x}{x^5+x^4}$ vicino a (0,0) è:



- 5. Se $f : \mathbf{R} \to \mathbf{R}$ è una funzione derivabile in $x_0 \in \mathbf{R}$ allora $f'(x_0) = \sum_{h \to 0} \frac{f(x_0) f(x_0 h)}{h}$; $b \lim_{h \to 0} \frac{f(x_0) + f(x_0 h)}{h}$; $b \lim_{h \to 0} \frac{f(x_0) + f(x_0 h)}{h}$; $b \lim_{h \to 0} \frac{f(x_0) + f(x_0 h)}{h}$; $b \lim_{h \to 0} \frac{f(x_0) + f(x_0 h)}{h}$; $b \lim_{h \to 0} \frac{f(x_0) + f(x_0 h)}{h}$; $b \lim_{h \to 0} \frac{f(x_0) + f(x_0 h)}{h}$; $b \lim_{h \to 0} \frac{f(x_0) + f(x_0 h)}{h}$; $b \lim_{h \to 0} \frac{f(x_0) + f(x_0 h)}{h}$; $b \lim_{h \to 0} \frac{f(x_0) + f(x_0 h)}{h}$; $b \lim_{h \to 0} \frac{f(x_0) + f(x_0 h)}{h}$; $b \lim_{h \to 0} \frac{f(x_0) + f(x_0 h)}{h}$; $b \lim_{h \to 0} \frac{f(x_0) + f(x_0 h)}{h}$; $b \lim_{h \to 0} \frac{f(x_0) + f(x_0 h)}{h}$; $b \lim_{h \to 0} \frac{f(x_0) + f(x_0 h)}{h}$; $b \lim_{h \to 0} \frac{f(x_0) + f(x_0)}{h}$;
- 6. Per w > 0 sia $g(w) = w \log(1+w)$ e sia $f: \mathbf{R} \to \mathbf{R}$ una funzione derivabile tale che per ogni $x \in \mathbf{R}$ si abbia f(x) > 0. Allora la derivata della funzione composta $g \circ f$ è data da $(g \circ f)' = \sum_{f'=1}^{f'} \frac{f'}{1+f} [f+(1+f)\log(1+f)];$ $b = \frac{f'}{1+f} [f-(1+f)\log(1+f)];$ $c = \frac{f'}{(1+f)f^2} [f+(1+f)\log(1+f)];$ $d = \frac{f'}{(1+f)f^2} [f-(1+f)\log(1+f)].$
- 7. Per quali valori dei parametri $\alpha \in \mathbf{R}, \beta \in \mathbf{R}$ la funzione $f(x) = \begin{cases} \frac{2e^{\alpha x} \alpha}{x^2 + 1} & \text{se } x > 0 \\ \frac{3\sin(\beta x)}{(x 1)^2} & \text{se } x \le 0 \end{cases}$ è derivabile? $\boxed{a \quad \alpha = 1, \ \beta = \frac{1}{2}; \quad \boxed{b} \quad \alpha = 1, \ \beta = \frac{1}{3}; \quad \boxed{d} \quad \alpha = 2, \ \beta = \frac{4}{3}; \quad \boxed{d} \quad \alpha = 2, \ \beta = 2.}$
- 8. L'equazione della retta tangente al grafico della funzione $g(x) = \frac{\sin x + \cos x}{x^2 + 1}$ nel punto $(\pi, g(\pi))$ è $(\pi^2 + 1)^2 y = \begin{bmatrix} (\pi 1)^2 x + \pi^3 3\pi^2 + \pi 1; \\ (\pi 1)^2 x \pi^3 + 3\pi^2 \pi + 1; \end{bmatrix} (\pi + 1)^2 x \pi^3 3\pi^2 \pi 1.$
- 9. L'insieme nel quale la funzione $f(x) = e^x(x^2 24)$ è crescente è: $a \{x \le -5\} \cup \{x \ge 3\}$; $b \{x \le -4\} \cup \{x \ge 2\}$; $x \le -6\} \cup \{x \ge 4\}$; $a \{x \le -3\} \cup \{x \ge 1\}$.
- 10. Sia $f(t) = t^3 + t$; il valore $(f^{-1})'(2)$ è: $a = \frac{1}{6}$; $b = \frac{1}{2}$; $c = \frac{1}{3}$; $a = \frac{1}{4}$.