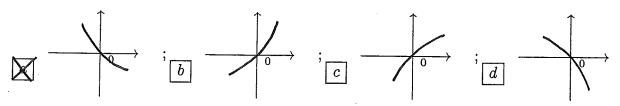
ANALISI MATEMATICA 1 - Seconda prova intermedia		8 gennaio 2014
Cognome:	Nome:	Matricola:
Corso di laurea:		Test Es1 Es2 Es3

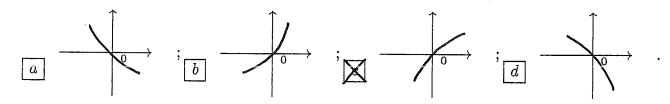
- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Sia f una funzione continua strettamente positiva e sia F una sua primitiva tale che F(0) < 0. Indicate quale grafico rappresenta vicino a x = 0 la soluzione y = y(x) del problema di Cauchy $\begin{cases} y' = F(y^2 y) \\ y(0) = 0 \end{cases}$



- 2. Sia $a_n > 0$ per ogni n. Se $\sum_{n=0}^{\infty} a_n$ è divergente, allora non è mai vero che: $\boxed{a} \quad \frac{1}{na_n} \to 0$; $\boxed{c} \quad a_n$ è decrescente; $\boxed{d} \quad a_n \to 0$.
- 3. Il polinomio di Taylor di secondo grado con centro $x_0 = 0$ di $f(x) = \cos(\log(1-x))$ è: $a \quad 1 2x^2$; $x \quad 1 \frac{x^2}{2}$; $x \quad 1 + 2x^2$; $x \quad 1 + \frac{x^2}{2}$.
- 4. $\lim_{x \to 0} \frac{3(\log(1+x) x)^2}{2\cos(x^2) 2} = \boxed{a} \frac{8}{9}; \boxed{b} \frac{1}{2}; \boxed{A} \frac{3}{4}; \boxed{d} 3.$
- 5. Sia f una funzione continua in [a, b]. Se $2 \le f(x) \le 4$ per ogni $x \in [a, b]$ e $\int_a^b f(x) dx = 12$, allora è certamente vero che: $[a, b] \ne [0, 2]$; $[a, b] \ne [0, 2]$; $[a, b] \ne [0, 5]$; $[a, b] \ne [0, 4]$; $[a, b] \ne [0, 3]$.
- 6. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua. Allora $\int_0^1 f\left(\frac{e^{2x}}{2}\right) dx = \boxed{a} \frac{1}{2} \int_{\frac{2}{e^2}}^2 \frac{f(t)}{t} dt;$ $\boxed{b} \frac{1}{2} \int_2^{2e^2} \frac{f(t)}{t} dt; \boxed{d} \frac{1}{2} \int_{\frac{1}{2}}^{\frac{e^2}{2}} \frac{f(t)}{t} dt;$
- 7. L'insieme dei valori $x \in \mathbf{R}$ per cui la serie $\sum_{n=1}^{\infty} \frac{1}{n2^n} \left(\frac{x-5}{1+x^2}\right)^n$ è convergente è: $a \mid \{x \leq -1\} \cup \{x \geq 1/2\}; \quad b \mid \{x < -1\} \cup \{x > 1/2\}; \quad x \leq -3/2\} \cup \{x \geq 1\};$ $a \mid \{x < -3/2\} \cup \{x > 1\}.$
- 8. L'insieme dei valori del parametro $\beta > 0$ per cui l'integrale improprio $\int_0^{+\infty} \frac{\arctan(x^2)}{(x+2)x^{2\beta}} dx \ extra convergente \ extra conve$

ANALISI MATEMATICA 1 - Seconda prova intermedia		8 gennaio 2014
Cognome:	Nome:	Matricola:
Corso di laurea:		Test Es1 Es2 Es3

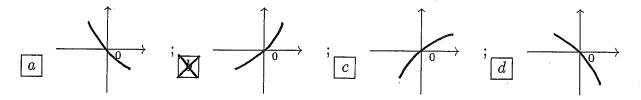
- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. L'insieme dei valori del parametro $\beta > 0$ per cui l'integrale improprio $\int_0^{+\infty} \frac{\sin^2(3x)}{x(x^{\beta}+1)} dx \ ext{è}$ convergente \(\text{e}: \quad \alpha \) $0 < \beta < \frac{3}{2}; \quad \beta \) <math>\beta > \frac{1}{4}; \quad \text{X} \beta > 0; \quad \alpha \) <math>0 < \beta < 1.$
- 2. Sia f una funzione continua strettamente positiva e sia F una sua primitiva tale che F(0) > 0. Indicate quale grafico rappresenta vicino a x = 0 la soluzione y = y(x) del problema di Cauchy $\begin{cases} y' = F(y^2 y) \\ y(0) = 0 \end{cases}$



- 3. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua. Allora $\int_0^1 f(2e^{-2x}) dx = \boxed{a} \frac{1}{2} \int_{\frac{1}{2}}^{\frac{e^2}{2}} \frac{f(t)}{t} dt;$ $\boxed{b} \frac{1}{2} \int_{\frac{1}{2}e^2}^{\frac{1}{2}} \frac{f(t)}{t} dt; \boxed{d} \frac{1}{2} \int_{\frac{e^2}{2}}^{2e^2} \frac{f(t)}{t} dt.$
- 4. Sia $a_n > 0$ per ogni n. Se $\sum_{n=0}^{\infty} a_n$ è convergente, allora non è mai vero che: \boxed{a} a_n è decrescente; \boxed{b} $a_n \to 0$; \boxed{X} $\frac{1}{na_n} \to 0$; \boxed{d} $n^2a_n \to 0$.
- 5. L'insieme dei valori $x \in \mathbf{R}$ per cui la serie $\sum_{n=1}^{\infty} \frac{1}{n2^n} \left(\frac{x-3}{1+x^2}\right)^n$ è convergente è: $a \quad \{x \le -3/2\} \cup \{x \ge 1\}; \quad b \quad \{x < -3/2\} \cup \{x > 1\}; \quad x \le -1\} \cup \{x \ge 1/2\};$ $a \quad \{x \le -1\} \cup \{x > 1/2\}.$
 - 6. Sia f una funzione continua in [a,b]. Se $1 \le f(x) \le 2$ per ogni $x \in [a,b]$ e $\int_a^b f(x) dx = 6$, allora è certamente vero che: a $[a,b] \ne [0,4]$; b $[a,b] \ne [0,3]$; a $[a,b] \ne [0,2]$; a $[a,b] \ne [0,5]$.
 - 7. Il polinomio di Taylor di secondo grado con centro $x_0=0$ di $f(x)=\cos(\sin(2x))$ è: $a + 2x^2$; $b + \frac{x^2}{2}$; $x + 2x^2$; $a + 2x^2$; $b + 2x^2$; $a + 2x^2$; $a + 2x^2$.
 - 8. $\lim_{x\to 0} \frac{2\sin(x^2) 2x^2}{3(\log(1+x) x)^3} = \boxed{a} -\frac{3}{4}; \boxed{b} -3; \boxed{\cancel{8}} \frac{8}{9}; \boxed{d} \frac{1}{2}.$

ANALISI MATEMATICA 1 - Seconda prova intermedia		8 gennaio 2014
Cognome:	Nome:	Matricola:
Corso di laurea:		

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. L'insieme dei valori $x \in \mathbb{R}$ per cui la serie $\sum_{n=1}^{\infty} \frac{1}{n2^n} \left(\frac{x-5}{1+x^2} \right)^n$ è convergente è: [a] $\{x < -1\} \cup \{x > 1/2\};$ [x] $\{x \le -3/2\} \cup \{x \ge 1\};$ [c] $\{x < -3/2\} \cup \{x > 1\};$ [d] $\{x \le -1\} \cup \{x \ge 1/2\}.$
 - 2. Sia f una funzione continua in [a,b]. Se $2 \le f(x) \le 4$ per ogni $x \in [a,b]$ e $\int_a^b f(x) dx = 12$, allora è certamente vero che: a $[a,b] \ne [0,5]$; b $[a,b] \ne [0,4]$; c $[a,b] \ne [0,3]$; $[a,b] \ne [0,2]$.
 - 3. Sia f una funzione continua strettamente negativa e sia F una sua primitiva tale che F(0) > 0. Indicate quale grafico rappresenta vicino a x = 0 la soluzione y = y(x) del problema di Cauchy $\begin{cases} y' = F(y^2 y) \\ y(0) = 0 \end{cases}$



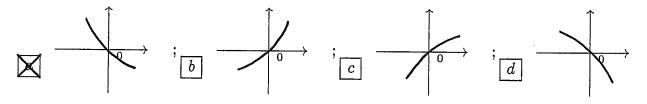
- 4. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua. Allora $\int_0^1 f(2e^{-2x}) dx = \boxed{a} \frac{1}{2} \int_2^{2e^2} \frac{f(t)}{t} dt;$ $\boxed{b} \frac{1}{2} \int_{\frac{1}{2}}^{\frac{e^2}{2}} \frac{f(t)}{t} dt; \boxed{c} \frac{1}{2} \int_{\frac{1}{2}e^2}^{\frac{1}{2}} \frac{f(t)}{t} dt; \boxed{k} \frac{1}{2} \int_{\frac{e^2}{e^2}}^{2} \frac{f(t)}{t} dt.$
- 5. $\lim_{x \to 0} \frac{3(\log(1+x) x)^2}{2\cos(x^2) 2} = \boxed{a} \frac{1}{2}; \boxed{k} -\frac{3}{4}; \boxed{c} -3; \boxed{d} \frac{8}{9}.$
- 6. L'insieme dei valori del parametro $\beta > 0$ per cui l'integrale improprio $\int_0^{+\infty} \frac{\sin^2(3x)}{x(x^{\beta}+1)} dx \ e^{-\frac{\pi}{2}} \cos(x) dx = 0$ convergente \(\text{e}: \quad \alpha \) $0 < \beta < 1; \quad \beta \) <math>0 < \beta < \frac{3}{2}; \quad \beta \) <math>\beta > 0.$
- 7. Sia $a_n > 0$ per ogni n. Se $\sum_{n=0}^{\infty} a_n$ è convergente, allora non è mai vero che: a $n^2 a_n \to 0$; a_n è decrescente; a $a_n \to 0$; $a_n \to 0$; $a_n \to 0$.
- 8. Il polinomio di Taylor di secondo grado con centro $x_0=0$ di $f(x)=\cos(e^{2x}-1)$ è: $a ext{ } 1-\frac{x^2}{2}; ext{ } b ext{ } 1+2x^2; ext{ } c ext{ } 1+\frac{x^2}{2}; ext{ } 1-2x^2.$

ANALISI MATEMATICA 1 - Seconda prova intermedia		8 gennaio 2014
Cognome:	Nome:	Matricola:
Corso di laurea:		

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.

1.
$$\lim_{x \to 0} \frac{2(\log(1+x) - x)^3}{3\sin(x^2) - 3x^2} = \boxed{a} \ \frac{8}{9}; \ \boxed{x} \ \frac{1}{2}; \ \boxed{c} \ -\frac{3}{4}; \ \boxed{d} \ -3.$$

- 2. L'insieme dei valori del parametro $\beta > 0$ per cui l'integrale improprio $\int_0^{+\infty} \frac{\cos(3x) + 2}{(x^{2\beta} + 2)\sqrt{x}} dx \ ext{è convergente è:} \quad \boxed{a} \quad \beta > 0; \quad \boxed{b} \quad 0 < \beta < 1; \quad \boxed{c} \quad 0 < \beta < \frac{3}{2}; \quad \boxed{\chi} \quad \beta > \frac{1}{4}.$
- 3. Sia f una funzione continua in [a,b]. Se $1 \le f(x) \le 2$ per ogni $x \in [a,b]$ e $\int_a^b f(x) dx = 6$, allora è certamente vero che: a $[a,b] \ne [0,2]$; a $[a,b] \ne [0,5]$; a $[a,b] \ne [0,4]$; a $[a,b] \ne [0,3]$.
- 4. Sia f una funzione continua strettamente positiva e sia F una sua primitiva tale che F(0) < 0. Indicate quale grafico rappresenta vicino a x = 0 la soluzione y = y(x) del problema di Cauchy $\begin{cases} y' = F(y^2 y) \\ y(0) = 0 \end{cases}$

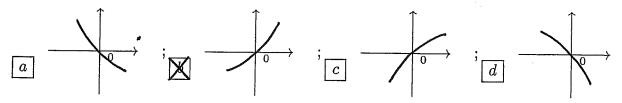


- 5. Il polinomio di Taylor di secondo grado con centro $x_0 = 0$ di $f(x) = \cos(\log(1-x))$ è: $a \quad 1 2x^2$; $c \quad 1 + 2x^2$; $d \quad 1 + \frac{x^2}{2}$.
- 6. L'insieme dei valori $x \in \mathbf{R}$ per cui la serie $\sum_{n=1}^{\infty} \frac{1}{n2^n} \left(\frac{5-x}{1+x^2} \right)^n$ è convergente è:

 [a] $\{x \le -1\} \cup \{x \ge 1/2\};$ [b] $\{x < -1\} \cup \{x > 1/2\};$ [c] $\{x \le -3/2\} \cup \{x \ge 1\};$ [X] $\{x < -3/2\} \cup \{x > 1\}.$
 - 7. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua. Allora $\int_0^1 f\left(\frac{e^{-2x}}{2}\right) dx = \left[a\right] \frac{1}{2} \int_{\frac{2}{e^2}}^2 \frac{f(t)}{t} dt;$ $\left[b\right] \frac{1}{2} \int_2^{2e^2} \frac{f(t)}{t} dt; \left[c\right] \frac{1}{2} \int_{\frac{1}{2}}^{\frac{e^2}{2}} \frac{f(t)}{t} dt; \left[c\right] \frac{1}{2} \int_{\frac{1}{2}}^{\frac{e^2}{2}} \frac{f(t)}{t} dt;$
 - 8. Sia $a_n > 0$ per ogni n. Se $\sum_{n=0}^{\infty} a_n$ è divergente, allora non è mai vero che: $\boxed{a} \frac{1}{na_n} \to 0$; $\boxed{c} a_n$ è decrescente; $\boxed{d} a_n \to 0$.

ANALISI MATEMATICA 1 - Seconda prova intermedia		8 gennaio 2014
Cognome:	Nome:	Matricola:
Corso di laurea:		

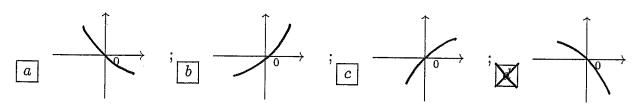
- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua. Allora $\int_0^1 f\left(\frac{e^{-2x}}{2}\right) dx = a \frac{1}{2} \int_2^{2e^2} \frac{f(t)}{t} dt;$ $b \frac{1}{2} \int_{\frac{1}{2}}^{\frac{e^2}{2}} \frac{f(t)}{t} dt; \quad \mathbf{Z} \int_{\frac{1}{2e^2}}^{\frac{1}{2}} \frac{f(t)}{t} dt; \quad dt; \quad dt; \quad dt;$
- 2. Il polinomio di Taylor di secondo grado con centro $x_0 = 0$ di $f(x) = \cos(e^{2x} 1)$ è: $a \quad 1 \frac{x^2}{2}$; $b \quad 1 + 2x^2$; $c \quad 1 + \frac{x^2}{2}$; $c \quad 1 2x^2$.
- 3. $\lim_{x \to 0} \frac{3\cos(x^2) 3}{2(\log(1+x) x)^2} = \boxed{a}^{\frac{1}{2}}; \boxed{b}^{\frac{3}{4}}; \boxed{A}^{\frac{3}{4}};$
- 4. L'insieme dei valori $x \in \mathbf{R}$ per cui la serie $\sum_{n=1}^{\infty} \frac{1}{n2^n} \left(\frac{5-x}{1+x^2} \right)^n$ è convergente è: $a \{x < -1\} \cup \{x > 1/2\}; \quad b \{x \le -3/2\} \cup \{x \ge 1\}; \quad x < -3/2\} \cup \{x > 1\};$ $a \{x < -1\} \cup \{x \ge 1/2\}.$
 - 5. Sia f una funzione continua strettamente negativa e sia F una sua primitiva tale che F(0) > 0. Indicate quale grafico rappresenta vicino a x = 0 la soluzione y = y(x) del problema di Cauchy $\begin{cases} y' = F(y^2 y) \\ y(0) = 0 \end{cases}$



- 6. Sia $a_n > 0$ per ogni n. Se $\sum_{n=0}^{\infty} a_n$ è convergente, allora non è mai vero che: $a n^2 a_n \to 0$; $b a_n$ è decrescente; $c a_n \to 0$; $a_n \to 0$.
- 7. L'insieme dei valori del parametro $\beta > 0$ per cui l'integrale improprio $\int_0^{+\infty} \frac{\cos(3x) + 2}{(x^{2\beta} + 2)\sqrt{x}} dx \ ext{è convergente è:} \quad \boxed{a} \ 0 < \beta < 1; \quad \boxed{b} \ 0 < \beta < \frac{3}{2}; \quad \boxed{A} \ \beta > \frac{1}{4}; \quad \boxed{d} \ \beta > 0.$
- 8. Sia f una funzione continua in [a,b]. Se $2 \le f(x) \le 4$ per ogni $x \in [a,b]$ e $\int_a^b f(x) dx = 8$, allora è certamente vero che: $[a,b] \ne [0,5]$; [b] $[a,b] \ne [0,4]$; [c] $[a,b] \ne [0,3]$; [d] $[a,b] \ne [0,2]$.

ANALISI MATEMATICA 1 - Seconda prova intermedia		8 gennaio 2014
Cognome:	Nome:	Matricola:
Corso di laurea:		

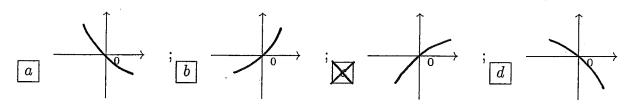
- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Sia f una funzione continua in [a,b]. Se $1 \le f(x) \le 2$ per ogni $x \in [a,b]$ e $\int_a^b f(x) dx = 4$, allora è certamente vero che: a $[a,b] \ne [0,3]$; b $[a,b] \ne [0,2]$; a $[a,b] \ne [0,5]$; a $[a,b] \ne [0,4]$.
- 2. Sia $f : \mathbf{R} \to \mathbf{R}$ una funzione continua. Allora $\int_0^1 f(2e^{2x}) dx = \boxed{a} \frac{1}{2} \int_{\frac{1}{2}e^2}^{\frac{1}{2}} \frac{f(t)}{t} dt;$ $\boxed{b} \frac{1}{2} \int_{\frac{2}{e^2}}^2 \frac{f(t)}{t} dt; \boxed{d} \frac{1}{2} \int_{\frac{1}{2}}^{2e^2} \frac{f(t)}{t} dt.$
- 3. Sia $a_n > 0$ per ogni n. Se $\sum_{n=0}^{\infty} a_n$ è divergente, allora non è mai vero che: $a = a_n \to 0$; $b = \frac{1}{na_n} \to 0$; $a = a_n \to$
- 4. Il polinomio di Taylor di secondo grado con centro $x_0=0$ di $f(x)=\cos(1-e^{-x})$ è: $a + \frac{x^2}{2}$; $b + 2x^2$; $a + 2x^2$; $a + 2x^2$.
- 5. L'insieme dei valori del parametro $\beta>0$ per cui l'integrale improprio $\int_0^{+\infty} \frac{\cos^2(2x)}{(x+1)x^{\beta}} dx \ extra convergente \ extra converg$
- 6. Sia f una funzione continua strettamente negativa e sia F una sua primitiva tale che F(0) < 0. Indicate quale grafico rappresenta vicino a x = 0 la soluzione y = y(x) del problema di Cauchy $\begin{cases} y' = F(y^2 y) \\ y(0) = 0 \end{cases}.$



- 7. $\lim_{x \to 0} \frac{2(\log(1+x) x)^3}{3\sin(x^2) 3x^2} = \boxed{a} -3; \boxed{b} \frac{8}{9}; \boxed{2}; \boxed{d} -\frac{3}{4}.$
- 8. L'insieme dei valori $x \in \mathbf{R}$ per cui la serie $\sum_{n=1}^{\infty} \frac{1}{n2^n} \left(\frac{3-x}{1+x^2} \right)^n$ è convergente è: a $\{x < -3/2\} \cup \{x > 1\};$ b $\{x \le -1\} \cup \{x \ge 1/2\};$ $\{x < -1\} \cup \{x > 1/2\};$ d $\{x \le -3/2\} \cup \{x \ge 1\}.$

ANALISI MATEMATICA 1 - Seconda prova intermedia		8 gennaio 2014
Cognome:	Nome:	Matricola:
Corso di laurea:		

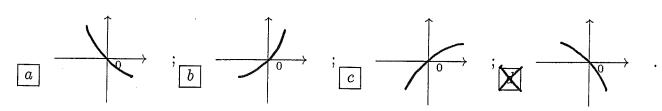
- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Il polinomio di Taylor di secondo grado con centro $x_0 = 0$ di $f(x) = \cos(\sin(2x))$ è: $a + \frac{x^2}{2}$; $x + \frac{x^2}{2}$; $a + \frac{x^2}{2}$; a
- 2. L'insieme dei valori $x \in \mathbf{R}$ per cui la serie $\sum_{n=1}^{\infty} \frac{1}{n2^n} \left(\frac{x-3}{1+x^2} \right)^n$ è convergente è: [a] $\{x < -3/2\} \cup \{x > 1\};$ [b] $\{x \le -1\} \cup \{x \ge 1/2\};$ [c] $\{x < -1\} \cup \{x > 1/2\};$ [d] $\{x \le -3/2\} \cup \{x \ge 1\}.$
 - 3. L'insieme dei valori del parametro $\beta>0$ per cui l'integrale improprio $\int_0^{+\infty} \frac{\arctan(x^2)}{(x+2)x^{2\beta}} dx$ è convergente è: \boxed{a} $\beta>\frac{1}{4}$; \boxed{b} $\beta>0$; \boxed{c} $0<\beta<1$; \boxed{d} $0<\beta<\frac{3}{2}$.
 - 4. Sia f una funzione continua in [a,b]. Se $1 \le f(x) \le 2$ per ogni $x \in [a,b]$ e $\int_a^b f(x) dx = 4$, allora è certamente vero che: a $[a,b] \ne [0,3]$; b $[a,b] \ne [0,2]$; a $[a,b] \ne [0,5]$; a $[a,b] \ne [0,4]$.
- 5. Sia $a_n > 0$ per ogni n. Se $\sum_{n=0}^{\infty} a_n$ è convergente, allora non è mai vero che: $a \to 0$; $a_n \to$
- 6. $\lim_{x \to 0} \frac{2\sin(x^2) 2x^2}{3(\log(1+x) x)^3} = \boxed{a} -3; \boxed{\cancel{x}} \frac{8}{9}; \boxed{c} \frac{1}{2}; \boxed{d} -\frac{3}{4}.$
- 7. Sia f una funzione continua strettamente positiva e sia F una sua primitiva tale che F(0) > 0. Indicate quale grafico rappresenta vicino a x = 0 la soluzione y = y(x) del problema di Cauchy $\begin{cases} y' = F(y^2 y) \\ y(0) = 0 \end{cases}$.



8. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua. Allora $\int_0^1 f\left(\frac{e^{2x}}{2}\right) dx = a \frac{1}{2} \int_{\frac{1}{2e^2}}^{\frac{1}{2}} \frac{f(t)}{t} dt;$ $b \frac{1}{2} \int_{\frac{2}{e^2}}^2 \frac{f(t)}{t} dt; c \frac{1}{2} \int_2^{2e^2} \frac{f(t)}{t} dt; \mathbf{K} \frac{1}{2} \int_{\frac{1}{2}}^{\frac{e^2}{2}} \frac{f(t)}{t} dt.$

ANALISI MATEMATICA 1 - Seconda prova intermedia		8 gennaio 2014
Cognome:	Nome:	Matricola:
Corso di laurea:		Test Es1 Es2 Es3

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Sia $a_n > 0$ per ogni n. Se $\sum_{n=0}^{\infty} a_n$ è divergente, allora non è mai vero che: $a_n = 0$ decrescente; $a_n = 0$ decrescent
- 2. $\lim_{x \to 0} \frac{3\cos(x^2) 3}{2(\log(1+x) x)^2} = \boxed{a} \frac{3}{4}; \boxed{x} 3; \boxed{c} \frac{8}{9}; \boxed{d} \frac{1}{2}.$
- 3. L'insieme dei valori $x \in \mathbf{R}$ per cui la serie $\sum_{n=1}^{\infty} \frac{1}{n2^n} \left(\frac{3-x}{1+x^2}\right)^n$ è convergente è: [a] $\{x \le -3/2\} \cup \{x \ge 1\}$; [b] $\{x < -3/2\} \cup \{x > 1\}$; [c] $\{x \le -1\} \cup \{x \ge 1/2\}$; $\{x < -1\} \cup \{x > 1/2\}$.
 - 4. L'insieme dei valori del parametro $\beta > 0$ per cui l'integrale improprio $\int_0^{+\infty} \frac{\cos^2(2x)}{(x+1)x^{\beta}} dx \ ext{è}$ convergente \(\text{e}: \quad \alpha \) $0 < \beta < \frac{3}{2}; \quad \beta \) <math>\beta > \frac{1}{4}; \quad \cappa \) <math>\beta > 0; \quad \(\beta \) <math>0 < \beta < 1.$
 - 5. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua. Allora $\int_0^1 f(2e^{2x}) dx = a \frac{1}{2} \int_{\frac{1}{2}}^{\frac{e^2}{2}} \frac{f(t)}{t} dt;$ $b \frac{1}{2} \int_{\frac{1}{2e^2}}^{\frac{1}{2}} \frac{f(t)}{t} dt; \quad c \frac{1}{2} \int_{\frac{2}{e^2}}^{2} \frac{f(t)}{t} dt; \quad dt; \quad dt;$
 - 6. Il polinomio di Taylor di secondo grado con centro $x_0 = 0$ di $f(x) = \cos(1 e^{-x})$ è: $a + 2x^2$; $b + \frac{x^2}{2}$; $c + 2x^2$; $c + 2x^2$; $c + 2x^2$.
 - 7. Sia f una funzione continua in [a,b]. Se $2 \le f(x) \le 4$ per ogni $x \in [a,b]$ e $\int_a^b f(x) dx = 8$, allora è certamente vero che: a $[a,b] \ne [0,4]$; b $[a,b] \ne [0,3]$; c $[a,b] \ne [0,2]$; c $[a,b] \ne [0,5]$.
 - 8. Sia f una funzione continua strettamente negativa e sia F una sua primitiva tale che F(0) < 0. Indicate quale grafico rappresenta vicino a x = 0 la soluzione y = y(x) del problema di Cauchy $\begin{cases} y' = F(y^2 y) \\ y(0) = 0 \end{cases}$.



1. (6 punti) Si determini per quali x > 0 la serie $\sum_{n=0}^{\infty} \frac{3^n + x^2}{nx^{2n} + 2}$ è convergente.

L'osservarione fondamentale è notare che x^{2n} ha diverso comportamento a seconda che sia 0 < x < 1, x = 1, x > 1.

Precisamente, si ha $x^{2n} \rightarrow 0$ se 0 < x < 1 (e anche $n x^{2n} \rightarrow 0$, poiché si può niscrivere come $n/(1/x^2)^n$, e gli esponentiali di base > 1 vanno all' nifinito più velocemente di ogni potenta; qui $\frac{1}{x^2} > 1 \dots$); $x^{2n} \rightarrow +\infty$ se x > 1.

Dunque, usando il criterio di confronto asintotico,

 $\frac{3^{n}+x^{2}}{nx^{2n}+2} \sim \frac{3^{n}}{2} \quad \text{se } 0 < x < 1 \quad \text{seine divergente, poiché } \frac{3^{n}}{2} \neq 0$ $\sqrt{\frac{3^{n}}{n}} \quad \text{se } x = 1 \quad \text{; seine divergente, poiché } \frac{3^{n}}{n} \neq 0$ $\sqrt{\frac{3^{n}}{nx^{2n}}} \quad \text{se } x > 1 \quad \text{on } 3^{n}$ $\sqrt{\frac{3^{n}}{nx^{2n}}} \quad \text{se } x > 1 \quad \text{on } 3^{n}$

Resta solo da considerare la serie $\sum_{n=1}^{\infty} \frac{3^n}{n \times 2^n}$ for $\times >1$. Dal criterio del rapporto abbriamo

 $\frac{3^{n+i}}{(n+i) \times^{2n+2}} \xrightarrow{n \times^{2ni}} \xrightarrow{n \to \infty} \frac{3}{x^2} , \quad e \xrightarrow{3} < 1 \quad \text{for } x > \sqrt{3}.$

Quindi la serie converge per $\times \sqrt{3}$ e diverge per $\times \sqrt{3}$. Per $\times = \sqrt{3}$ si ha

 $\sum_{h=1}^{\infty} \frac{3^h}{h \cdot 3^n} = \sum_{h=1}^{\infty} \frac{1}{h}, \text{ divergents.}$

Conclusione: la serie converge per x>13.

2. (6 punti) Disegnare il grafico qualitativo della funzione $f(x) = (|x-2|+1)(1+x)^{1/3}$; in particolare si studino crescenza e decrescenza, convessità e concavità, e si evidenzino i punti di non derivabilità.

Siccome |x-2| = x-2 se $x \neq 2$ e |x-2| = 2-x se x < 2, considerians le due funcioni $f+(x) = (x-1)(1+x)^{1/3}$ (per $x \neq 2$) e $f_-(x) = (3-x)(1+x)^{1/3}$ (per x < 2).

Si ha $f(0) = f_{-}(0) = 3$, $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} f_{+}(x) = +\infty$, $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} f_{-}(x) = -\infty$ (le radici dispari consciuento il segno dell'argomento...).

Pei lim $f(x)/x = \lim_{x \to +\infty} \frac{x-1}{x} (1+x)^{4/3} = +\infty$, $\lim_{x \to +\infty} f(x)/x = \lim_{x \to +\infty} \frac{3-x}{x} (1+x)^{4/3} = +\infty$,

e nou ci somo asintoti obliqui.

Ancora: $f_{+}(x) > 0$ pu x > 2, $f_{+}(2) = 3^{1/3}$; $f_{-}(x) > 0$ per 1+x > 0, vise $-1 < x \le 2$ e $f_{-}(x) < 0$ per x < -1, $f_{-}(x) = 0$ per x = -1, $f_{-}(2) = 3^{1/3}$. Calcolians le derivate prime (per $x \ne -1$...):

 $f'_{+}(x) = (1+x)^{3/3} + (x-1)\frac{1}{3}(1+x)^{-2/3} = (1+x+\frac{1}{3}x-\frac{1}{3})(1+x)^{-2/3} = \frac{2}{3}(2x+1)(1+x)^{-2/3}$

 $f'(x) = -(1+x)^{1/3} + (3-x)\frac{1}{3}(1+x)^{-2/3} = (-1-x+1-\frac{x}{3})(1+x)^{-2/3} = -\frac{4}{3}x(1+x)^{-2/3}.$

Outhdi f_+ è <u>crescente</u> (2x+1>0 per x>2), mentre f_- è <u>rescente</u> per x<0, <u>decrescente</u> per x>0 (e x<2...). Il printo $x_0=0$ è di massimo relativo, il printo $x_0=2$ è di minimo relativo $(f_-$ decresce per 0<x<2,

for each per x>2).

Abbiano anche lim $f'_-(x)=+\infty$, lim $f'_-(x)=+\infty$; lim $f'_-(x)=-\frac{8}{35/3}$ /

lim $f'_+(x)=\frac{10}{3^{5/3}}$, for an c'e "tangente" verticale in $x_0=-1$ e un $x_0=-1$

punto spigoloso in xo=2.

Calcolians le derivate seconde (pa x≠-1):

$$f''_{+}(x) = \frac{2}{3} \left[2(1+x)^{-2/3} - \frac{2}{3}(2x+1)(1+x)^{-5/3} \right] = \frac{2}{3} \left(2+2x - \frac{4}{3}x - \frac{2}{3} \right) (1+x)^{-5/3} =$$

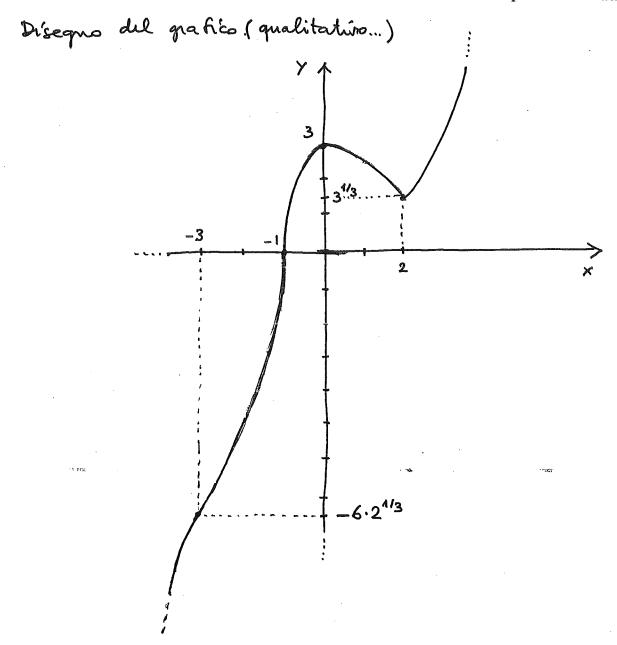
$$= \frac{2}{3} \left(\frac{2}{3}x + \frac{4}{3} \right) (1+x)^{-5/3} = \frac{4}{9} (x+2)(1+x)^{-5/3} > 0 \text{ for } x > 2,$$

$$f''_{-}(x) = -\frac{4}{3}[(1+x)^{-2/3} - \frac{2}{3}x(1+x)^{-5/3}] = -\frac{4}{3}(1+x-\frac{2}{3}x)(1+x)^{-5/3} =$$

 $= -\frac{4}{9} (3+x)(1+x)^{-5/3} > 0 \text{ pm } -3< x < -1, < 0 \text{ pm } x < -3 < -1 < x < 2.$

Quindi $f \in \frac{\text{convessa}}{\text{fc}} \text{ fer } -34x4-1 \text{ ex>2}, \frac{\text{concowa}}{\text{fconversa}} \text{ per } x4-3 \text{ e}-14x42.$ Si ha anche $f(-3)=-6\cdot2^{1/3}$.

2. (6 punti) Disegnare il grafico qualitativo della funzione $f(x) = (|x-2|+1)(1+x)^{1/3}$; in particolare si studino crescenza e decrescenza, convessità e concavità, e si evidenzino i punti di non derivabilità.



3. (6 punti) Si determini la soluzione y = y(x) del problema di Cauchy

$$\begin{cases} y' = \sin(3x)\sqrt{2 - y^2} \\ y(0) = 0. \end{cases}$$

Il punto $x_0 = 0$ è di massimo relativo, di minimo relativo, o né di massimo relativo né di minimo relativo?

É m'equatione differentiale del 1° ordine, non-lineare, a variabili separabili. Si ha

$$\frac{dy}{dx} = \sin(3x)\sqrt{2-y^2} \implies \int \frac{dy}{\sqrt{2-y^2}} = \int \sin(3x)dx = -\frac{1}{3}\cos(3x) + c.$$

Ora $\sqrt{2-y^2} = \sqrt{2}\sqrt{1-(\gamma/\sqrt{2})^2}$, e ponendo $t = \gamma/\sqrt{2}$, $d\gamma = \sqrt{2}dt$ si ha

$$\int \frac{dy}{\sqrt{2-y^2}} = \int \frac{1}{\sqrt{2}\sqrt{1-t^2}} \sqrt{2} dt = \arcsin(\frac{y}{\sqrt{2}}).$$

Dunque abbians ottenuto

arcsin
$$(7/\sqrt{2}) = -\frac{1}{3}\cos(3x) + c$$

e imponendo y(0)=0 viene $0=accin 0=-\frac{1}{3}+c$, vie $c=\frac{1}{3}$.

In conclusione

ancsin
$$(\frac{1}{\sqrt{2}}) = \frac{1}{3} - \frac{1}{3} \cos(3x)$$
.

La funcione inversa dell'ancoseno è il seno, dunque

$$\gamma(x) = \sqrt{2} \sin \left(\frac{1}{3} - \frac{1}{3} \cos(3x)\right).$$

. Come si legge direttamente dall'equasione $y'=\sin(3x)\sqrt{2-y^2}$, si ha y'(x)<0 for x<0 ($\in \sin(3x)<0$...) e y'(x)>0 for x>0 ($\in \sin(3x)>0$...). [Qui si nitende per x "vicino" a 0...].

Durque y decrere per x<0, x vicino a 0, e cresce per x>0, x vicino a 0. In conclusione xo=0 è un punto di minimo relativo.